optional.h 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// This file copy from boost/optional/optional.hpp and boost version: 1.41.0
// Modified the following points:
// 1. modify namespace from boost::optional to paddle::optional
// 2. remove the depending boost header files
// 3. remove/modify some macro
// 4. copy some necessary data structures which are the depended by optional
// 5. replace type_with_alignment with std::aligned_storage

// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
//
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/lib/optional for documentation.
//
// You are welcome to contact the author at:
//  fernando_cacciola@hotmail.com
//
20
#pragma once
21 22

#include <algorithm>
23
#include <cassert>
24 25 26 27 28 29
#include <functional>
#include <new>
#include <type_traits>

#include "none.h"

30 31
namespace paddle {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
// member template of a factory as used in the optional<> implementation.
// He proposed this simple fix which is to move the call to apply<> outside
// namespace boost.
namespace paddle_optional_detail {
template <class T, class Factory>
void construct(Factory const& factory, void* address) {
  factory.template apply<T>(address);
}
}

template <typename T>
class optional;

class in_place_factory_base {};
class typed_in_place_factory_base {};

// template<class OP> bool equal_pointees(OP const& x, OP const& y);
// template<class OP> struct equal_pointees_t;
//
// Being OP a model of OptionalPointee (either a pointer or an optional):
//
// If both x and y have valid pointees, returns the result of (*x == *y)
// If only one has a valid pointee, returns false.
// If none have valid pointees, returns true.
// No-throw
template <class OptionalPointee>
inline bool equal_pointees(OptionalPointee const& x, OptionalPointee const& y) {
  return (!x) != (!y) ? false : (!x ? true : (*x) == (*y));
}

template <class OptionalPointee>
struct equal_pointees_t
    : std::binary_function<OptionalPointee, OptionalPointee, bool> {
  bool operator()(OptionalPointee const& x, OptionalPointee const& y) const {
    return equal_pointees(x, y);
  }
};

// template<class OP> bool less_pointees(OP const& x, OP const& y);
// template<class OP> struct less_pointees_t;
//
// Being OP a model of OptionalPointee (either a pointer or an optional):
//
// If y has not a valid pointee, returns false.
// ElseIf x has not a valid pointee, returns true.
// ElseIf both x and y have valid pointees, returns the result of (*x < *y)
// No-throw
template <class OptionalPointee>
inline bool less_pointees(OptionalPointee const& x, OptionalPointee const& y) {
  return !y ? false : (!x ? true : (*x) < (*y));
}

template <class OptionalPointee>
struct less_pointees_t
    : std::binary_function<OptionalPointee, OptionalPointee, bool> {
  bool operator()(OptionalPointee const& x, OptionalPointee const& y) const {
    return less_pointees(x, y);
  }
};

namespace detail {

template <typename RefT>
class reference_content {
 private:  // representation
  RefT content_;

 public:  // structors
  ~reference_content() {}

103 104 105
// TODO(zhiqiu): remove it
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
106
  reference_content(RefT r) : content_(r) {}
107
#pragma GCC diagnostic pop
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

  reference_content(const reference_content& operand)
      : content_(operand.content_) {}

 private:  // non-Assignable
  reference_content& operator=(const reference_content&);

 public:  // queries
  RefT get() const { return content_; }
};

template <typename T>
struct make_reference_content {
  typedef T type;
};

template <typename T>
struct make_reference_content<T&> {
  typedef reference_content<T&> type;
};

}  // namespace detail

namespace optional_detail {

// This local class is used instead of that in "aligned_storage.hpp"
// because I've found the 'official' class to ICE BCB5.5
// when some types are used with optional<>
// (due to sizeof() passed down as a non-type template parameter)
template <class T>
class aligned_storage {
  // Borland ICEs if unnamed unions are used for this!
  union dummy_u {
    char data[sizeof(T)];
    typename std::aligned_storage<::std::alignment_of<T>::value>::type aligner_;
  } dummy_;

 public:
  void const* address() const { return &dummy_.data[0]; }
  void* address() { return &dummy_.data[0]; }
};

template <class T>
struct types_when_isnt_ref {
  typedef T const& reference_const_type;
  typedef T& reference_type;
  typedef T const* pointer_const_type;
  typedef T* pointer_type;
  typedef T const& argument_type;
};
template <class T>
struct types_when_is_ref {
  typedef typename std::remove_reference<T>::type raw_type;

  typedef raw_type& reference_const_type;
  typedef raw_type& reference_type;
  typedef raw_type* pointer_const_type;
  typedef raw_type* pointer_type;
  typedef raw_type& argument_type;
};

struct optional_tag {};

template <class T>
class optional_base : public optional_tag {
 private:
  typedef
      typename ::paddle::detail::make_reference_content<T>::type internal_type;

  typedef aligned_storage<internal_type> storage_type;

  typedef types_when_isnt_ref<T> types_when_not_ref;
  typedef types_when_is_ref<T> types_when_ref;

  typedef optional_base<T> this_type;

 protected:
  typedef T value_type;

  typedef std::true_type is_reference_tag;
  typedef std::false_type is_not_reference_tag;

  typedef typename std::is_reference<T>::type is_reference_predicate;

  typedef typename std::conditional<is_reference_predicate::value,
                                    types_when_ref,
                                    types_when_not_ref>::type types;

  typedef bool (this_type::*unspecified_bool_type)() const;

  typedef typename types::reference_type reference_type;
  typedef typename types::reference_const_type reference_const_type;
  typedef typename types::pointer_type pointer_type;
  typedef typename types::pointer_const_type pointer_const_type;
  typedef typename types::argument_type argument_type;

  // Creates an optional<T> uninitialized.
  // No-throw
  optional_base() : m_initialized(false) {}

  // Creates an optional<T> uninitialized.
  // No-throw
  optional_base(none_t) : m_initialized(false) {}

  // Creates an optional<T> initialized with 'val'.
  // Can throw if T::T(T const&) does
  optional_base(argument_type val) : m_initialized(false) { construct(val); }

  // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise
  // creates an uninitialzed optional<T>.
  // Can throw if T::T(T const&) does
  optional_base(bool cond, argument_type val) : m_initialized(false) {
    if (cond) construct(val);
  }

  // Creates a deep copy of another optional<T>
  // Can throw if T::T(T const&) does
  optional_base(optional_base const& rhs) : m_initialized(false) {
    if (rhs.is_initialized()) construct(rhs.get_impl());
  }

  // This is used for both converting and in-place constructions.
  // Derived classes use the 'tag' to select the appropriate
  // implementation (the correct 'construct()' overload)
  template <class Expr>
  explicit optional_base(Expr const& expr, Expr const* tag)
      : m_initialized(false) {
    construct(expr, tag);
  }

  // No-throw (assuming T::~T() doesn't)
  ~optional_base() { destroy(); }

  // Assigns from another optional<T> (deep-copies the rhs value)
  void assign(optional_base const& rhs) {
    if (is_initialized()) {
      if (rhs.is_initialized())
        assign_value(rhs.get_impl(), is_reference_predicate());
      else
        destroy();
    } else {
      if (rhs.is_initialized()) construct(rhs.get_impl());
    }
  }

  // Assigns from another _convertible_ optional<U> (deep-copies the rhs value)
  template <class U>
  void assign(optional<U> const& rhs) {
    if (is_initialized()) {
      if (rhs.is_initialized())
        assign_value(static_cast<value_type>(rhs.get()),
                     is_reference_predicate());
      else
        destroy();
    } else {
      if (rhs.is_initialized()) construct(static_cast<value_type>(rhs.get()));
    }
  }

  // Assigns from a T (deep-copies the rhs value)
  void assign(argument_type val) {
    if (is_initialized())
      assign_value(val, is_reference_predicate());
    else
      construct(val);
  }

  // Assigns from "none", destroying the current value, if any, leaving this
  // UNINITIALIZED
  // No-throw (assuming T::~T() doesn't)
  void assign(none_t) { destroy(); }

  template <class Expr>
  void assign_expr(Expr const& expr, Expr const* tag) {
    if (is_initialized())
      assign_expr_to_initialized(expr, tag);
    else
      construct(expr, tag);
  }

 public:
  // Destroys the current value, if any, leaving this UNINITIALIZED
  // No-throw (assuming T::~T() doesn't)
  void reset() { destroy(); }

  // Replaces the current value -if any- with 'val'
  void reset(argument_type val) { assign(val); }

  // Returns a pointer to the value if this is initialized, otherwise,
  // returns NULL.
  // No-throw
  pointer_const_type get_ptr() const {
    return m_initialized ? get_ptr_impl() : 0;
  }
  pointer_type get_ptr() { return m_initialized ? get_ptr_impl() : 0; }

  bool is_initialized() const { return m_initialized; }

 protected:
  void construct(argument_type val) {
    new (m_storage.address()) internal_type(val);
    m_initialized = true;
  }

  // Constructs in-place using the given factory
  template <class Expr>
  void construct(Expr const& factory, in_place_factory_base const*) {
    static_assert(!is_reference_predicate::value,
                  "!is_reference_predicate::value");
    paddle_optional_detail::construct<value_type>(factory, m_storage.address());
    m_initialized = true;
  }

  // Constructs in-place using the given typed factory
  template <class Expr>
  void construct(Expr const& factory, typed_in_place_factory_base const*) {
    static_assert(!is_reference_predicate::value,
                  "!is_reference_predicate::value");
    factory.apply(m_storage.address());
    m_initialized = true;
  }

  template <class Expr>
  void assign_expr_to_initialized(Expr const& factory,
                                  in_place_factory_base const* tag) {
    destroy();
    construct(factory, tag);
  }

  // Constructs in-place using the given typed factory
  template <class Expr>
  void assign_expr_to_initialized(Expr const& factory,
                                  typed_in_place_factory_base const* tag) {
    destroy();
    construct(factory, tag);
  }

  // Constructs using any expression implicitely convertible to the single
  // argument
  // of a one-argument T constructor.
  // Converting constructions of optional<T> from optional<U> uses this function
  // with
  // 'Expr' being of type 'U' and relying on a converting constructor of T from
  // U.
  template <class Expr>
  void construct(Expr const& expr, void const*) {
    new (m_storage.address()) internal_type(expr);
    m_initialized = true;
  }

  // Assigns using a form any expression implicitely convertible to the single
  // argument
  // of a T's assignment operator.
  // Converting assignments of optional<T> from optional<U> uses this function
  // with
  // 'Expr' being of type 'U' and relying on a converting assignment of T from
  // U.
  template <class Expr>
  void assign_expr_to_initialized(Expr const& expr, void const*) {
    assign_value(expr, is_reference_predicate());
  }

  void assign_value(argument_type val, is_not_reference_tag) {
    get_impl() = val;
  }
  void assign_value(argument_type val, is_reference_tag) { construct(val); }

  void destroy() {
    if (m_initialized) destroy_impl(is_reference_predicate());
  }

  unspecified_bool_type safe_bool() const {
    return m_initialized ? &this_type::is_initialized : 0;
  }

  reference_const_type get_impl() const {
    return dereference(get_object(), is_reference_predicate());
  }
  reference_type get_impl() {
    return dereference(get_object(), is_reference_predicate());
  }

  pointer_const_type get_ptr_impl() const {
    return cast_ptr(get_object(), is_reference_predicate());
  }
  pointer_type get_ptr_impl() {
    return cast_ptr(get_object(), is_reference_predicate());
  }

 private:
  // internal_type can be either T or reference_content<T>
  internal_type const* get_object() const {
    return static_cast<internal_type const*>(m_storage.address());
  }
  internal_type* get_object() {
    return static_cast<internal_type*>(m_storage.address());
  }

  // reference_content<T> lacks an implicit conversion to T&, so the following
  // is needed to obtain a proper reference.
  reference_const_type dereference(internal_type const* p,
                                   is_not_reference_tag) const {
    return *p;
  }
  reference_type dereference(internal_type* p, is_not_reference_tag) {
    return *p;
  }
  reference_const_type dereference(internal_type const* p,
                                   is_reference_tag) const {
    return p->get();
  }
  reference_type dereference(internal_type* p, is_reference_tag) {
    return p->get();
  }

  void destroy_impl(is_not_reference_tag) {
    get_ptr_impl()->T::~T();
    m_initialized = false;
  }

  void destroy_impl(is_reference_tag) { m_initialized = false; }

  // If T is of reference type, trying to get a pointer to the held value must
  // result in a compile-time error.
  // Decent compilers should disallow conversions from reference_content<T>* to
  // T*, but just in case,
  // the following olverloads are used to filter out the case and guarantee an
  // error in case of T being a reference.
  pointer_const_type cast_ptr(internal_type const* p,
                              is_not_reference_tag) const {
    return p;
  }
  pointer_type cast_ptr(internal_type* p, is_not_reference_tag) { return p; }
  pointer_const_type cast_ptr(internal_type const* p, is_reference_tag) const {
    return &p->get();
  }
  pointer_type cast_ptr(internal_type* p, is_reference_tag) {
    return &p->get();
  }

  bool m_initialized;
  storage_type m_storage;
};

}  // namespace optional_detail

template <class T>
class optional : public optional_detail::optional_base<T> {
  typedef optional_detail::optional_base<T> base;

  typedef typename base::unspecified_bool_type unspecified_bool_type;

 public:
  typedef optional<T> this_type;

  typedef typename base::value_type value_type;
  typedef typename base::reference_type reference_type;
  typedef typename base::reference_const_type reference_const_type;
  typedef typename base::pointer_type pointer_type;
  typedef typename base::pointer_const_type pointer_const_type;
  typedef typename base::argument_type argument_type;

  // Creates an optional<T> uninitialized.
  // No-throw
  optional() : base() {}

  // Creates an optional<T> uninitialized.
  // No-throw
  optional(none_t none_) : base(none_) {}

  // Creates an optional<T> initialized with 'val'.
  // Can throw if T::T(T const&) does
  optional(argument_type val) : base(val) {}

  // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise
  // creates an uninitialized optional.
  // Can throw if T::T(T const&) does
  optional(bool cond, argument_type val) : base(cond, val) {}

  // Creates a deep copy of another convertible optional<U>
  // Requires a valid conversion from U to T.
  // Can throw if T::T(U const&) does
  template <class U>
  explicit optional(optional<U> const& rhs) : base() {
    if (rhs.is_initialized()) this->construct(rhs.get());
  }

  // Creates an optional<T> with an expression which can be either
  //  (a) An instance of InPlaceFactory (i.e. in_place(a,b,...,n);
  //  (b) An instance of TypedInPlaceFactory ( i.e. in_place<T>(a,b,...,n);
  //  (c) Any expression implicitely convertible to the single type
  //      of a one-argument T's constructor.
  //  (d*) Weak compilers (BCB) might also resolved Expr as optional<T> and
  //  optional<U>
  //       even though explicit overloads are present for these.
  // Depending on the above some T ctor is called.
  // Can throw is the resolved T ctor throws.
  template <class Expr>
  explicit optional(Expr const& expr) : base(expr, &expr) {}

  // Creates a deep copy of another optional<T>
  // Can throw if T::T(T const&) does
  optional(optional const& rhs) : base(rhs) {}

  // No-throw (assuming T::~T() doesn't)
  ~optional() {}

  // Assigns from an expression. See corresponding constructor.
  // Basic Guarantee: If the resolved T ctor throws, this is left UNINITIALIZED
  template <class Expr>
  optional& operator=(Expr expr) {
    this->assign_expr(expr, &expr);
    return *this;
  }

  // Assigns from another convertible optional<U> (converts && deep-copies the
  // rhs value)
  // Requires a valid conversion from U to T.
  // Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
  template <class U>
  optional& operator=(optional<U> const& rhs) {
    this->assign(rhs);
    return *this;
  }

  // Assigns from another optional<T> (deep-copies the rhs value)
  // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
  //  (NOTE: On BCB, this operator is not actually called and left is left
  //  UNMODIFIED in case of a throw)
  optional& operator=(optional const& rhs) {
    this->assign(rhs);
    return *this;
  }

  // Assigns from a T (deep-copies the rhs value)
  // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
  optional& operator=(argument_type val) {
    this->assign(val);
    return *this;
  }

  // Assigns from a "none"
  // Which destroys the current value, if any, leaving this UNINITIALIZED
  // No-throw (assuming T::~T() doesn't)
  optional& operator=(none_t none_) {
    this->assign(none_);
    return *this;
  }

  // Returns a reference to the value if this is initialized, otherwise,
  // the behaviour is UNDEFINED
  // No-throw
  reference_const_type get() const {
    assert(this->is_initialized());
    return this->get_impl();
  }
  reference_type get() {
    assert(this->is_initialized());
    return this->get_impl();
  }

  // Returns a copy of the value if this is initialized, 'v' otherwise
  reference_const_type get_value_or(reference_const_type v) const {
    return this->is_initialized() ? get() : v;
  }
  reference_type get_value_or(reference_type v) {
    return this->is_initialized() ? get() : v;
  }

  // Returns a pointer to the value if this is initialized, otherwise,
  // the behaviour is UNDEFINED
  // No-throw
  pointer_const_type operator->() const {
    assert(this->is_initialized());
    return this->get_ptr_impl();
  }
  pointer_type operator->() {
    assert(this->is_initialized());
    return this->get_ptr_impl();
  }

  // Returns a reference to the value if this is initialized, otherwise,
  // the behaviour is UNDEFINED
  // No-throw
  reference_const_type operator*() const { return this->get(); }
  reference_type operator*() { return this->get(); }

  // implicit conversion to "bool"
  // No-throw
  operator unspecified_bool_type() const { return this->safe_bool(); }

  // This is provided for those compilers which don't like the conversion to
  // bool
  // on some contexts.
  bool operator!() const { return !this->is_initialized(); }
};

// Returns optional<T>(v)
template <class T>
inline optional<T> make_optional(T const& v) {
  return optional<T>(v);
}

// Returns optional<T>(cond,v)
template <class T>
inline optional<T> make_optional(bool cond, T const& v) {
  return optional<T>(cond, v);
}

// Returns a reference to the value if this is initialized, otherwise, the
// behaviour is UNDEFINED.
// No-throw
template <class T>
inline typename optional<T>::reference_const_type get(optional<T> const& opt) {
  return opt.get();
}

template <class T>
inline typename optional<T>::reference_type get(optional<T>& opt) {
  return opt.get();
}

// Returns a pointer to the value if this is initialized, otherwise, returns
// NULL.
// No-throw
template <class T>
inline typename optional<T>::pointer_const_type get(optional<T> const* opt) {
  return opt->get_ptr();
}

template <class T>
inline typename optional<T>::pointer_type get(optional<T>* opt) {
  return opt->get_ptr();
}

// Returns a reference to the value if this is initialized, otherwise, the
// behaviour is UNDEFINED.
// No-throw
template <class T>
inline typename optional<T>::reference_const_type get_optional_value_or(
    optional<T> const& opt, typename optional<T>::reference_const_type v) {
  return opt.get_value_or(v);
}

template <class T>
inline typename optional<T>::reference_type get_optional_value_or(
    optional<T>& opt, typename optional<T>::reference_type v) {
  return opt.get_value_or(v);
}

// Returns a pointer to the value if this is initialized, otherwise, returns
// NULL.
// No-throw
template <class T>
inline typename optional<T>::pointer_const_type get_pointer(
    optional<T> const& opt) {
  return opt.get_ptr();
}

template <class T>
inline typename optional<T>::pointer_type get_pointer(optional<T>& opt) {
  return opt.get_ptr();
}

// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics
// (compare values).
// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in
// generic code instead.

//
// optional<T> vs optional<T> cases
//

template <class T>
inline bool operator==(optional<T> const& x, optional<T> const& y) {
  return equal_pointees(x, y);
}

template <class T>
inline bool operator<(optional<T> const& x, optional<T> const& y) {
  return less_pointees(x, y);
}

template <class T>
inline bool operator!=(optional<T> const& x, optional<T> const& y) {
  return !(x == y);
}

template <class T>
inline bool operator>(optional<T> const& x, optional<T> const& y) {
  return y < x;
}

template <class T>
inline bool operator<=(optional<T> const& x, optional<T> const& y) {
  return !(y < x);
}

template <class T>
inline bool operator>=(optional<T> const& x, optional<T> const& y) {
  return !(x < y);
}

//
// optional<T> vs T cases
//
template <class T>
inline bool operator==(optional<T> const& x, T const& y) {
  return equal_pointees(x, optional<T>(y));
}

template <class T>
inline bool operator<(optional<T> const& x, T const& y) {
  return less_pointees(x, optional<T>(y));
}

template <class T>
inline bool operator!=(optional<T> const& x, T const& y) {
  return !(x == y);
}

template <class T>
inline bool operator>(optional<T> const& x, T const& y) {
  return y < x;
}

template <class T>
inline bool operator<=(optional<T> const& x, T const& y) {
  return !(y < x);
}

template <class T>
inline bool operator>=(optional<T> const& x, T const& y) {
  return !(x < y);
}

//
// T vs optional<T> cases
//

template <class T>
inline bool operator==(T const& x, optional<T> const& y) {
  return equal_pointees(optional<T>(x), y);
}

template <class T>
inline bool operator<(T const& x, optional<T> const& y) {
  return less_pointees(optional<T>(x), y);
}

template <class T>
inline bool operator!=(T const& x, optional<T> const& y) {
  return !(x == y);
}

template <class T>
inline bool operator>(T const& x, optional<T> const& y) {
  return y < x;
}

template <class T>
inline bool operator<=(T const& x, optional<T> const& y) {
  return !(y < x);
}

template <class T>
inline bool operator>=(T const& x, optional<T> const& y) {
  return !(x < y);
}

//
// optional<T> vs none cases
//

template <class T>
inline bool operator==(optional<T> const& x, none_t) {
  return equal_pointees(x, optional<T>());
}

template <class T>
inline bool operator<(optional<T> const& x, none_t) {
  return less_pointees(x, optional<T>());
}

template <class T>
inline bool operator!=(optional<T> const& x, none_t y) {
  return !(x == y);
}

template <class T>
inline bool operator>(optional<T> const& x, none_t y) {
  return y < x;
}

template <class T>
inline bool operator<=(optional<T> const& x, none_t y) {
  return !(y < x);
}

template <class T>
inline bool operator>=(optional<T> const& x, none_t y) {
  return !(x < y);
}

//
// none vs optional<T> cases
//

template <class T>
inline bool operator==(none_t x, optional<T> const& y) {
  return equal_pointees(optional<T>(), y);
}

template <class T>
inline bool operator<(none_t x, optional<T> const& y) {
  return less_pointees(optional<T>(), y);
}

template <class T>
inline bool operator!=(none_t x, optional<T> const& y) {
  return !(x == y);
}

template <class T>
inline bool operator>(none_t x, optional<T> const& y) {
  return y < x;
}

template <class T>
inline bool operator<=(none_t x, optional<T> const& y) {
  return !(y < x);
}

template <class T>
inline bool operator>=(none_t x, optional<T> const& y) {
  return !(x < y);
}

namespace optional_detail {

// optional's swap:
// If both are initialized, calls swap(T&, T&). If this swap throws, both will
// remain initialized but their values are now unspecified.
// If only one is initialized, calls U.reset(*I), THEN I.reset().
// If U.reset(*I) throws, both are left UNCHANGED (U is kept uinitialized and I
// is never reset)
// If both are uninitialized, do nothing (no-throw)
template <class T>
inline void optional_swap(optional<T>& x, optional<T>& y) {
  if (!x && !!y) {
    x.reset(*y);
    y.reset();
  } else if (!!x && !y) {
    y.reset(*x);
    x.reset();
  } else if (!!x && !!y) {
    // allow for Koenig lookup
    using std::swap;
    swap(*x, *y);
  }
}

}  // namespace optional_detail

}  // namespace paddle