LinearChainCRF.cpp 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "LinearChainCRF.h"
Y
Yu Yang 已提交
16
#include <algorithm>
Z
zhangjinchao01 已提交
17 18 19

namespace paddle {

20
LinearChainCRF::LinearChainCRF(int numClasses, real* para)
Z
zhangjinchao01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    : numClasses_(numClasses) {
  a_ = Matrix::create(para, 1, numClasses_);
  b_ = Matrix::create(para + numClasses_, 1, numClasses_);
  w_ = Matrix::create(para + 2 * numClasses_, numClasses_, numClasses_);

  ones_ = Matrix::create(1, numClasses_);
  ones_->one();

  expW_ = Matrix::create(numClasses_, numClasses_);
}

// normalize x so that its sum is 1 and return the original sum;
static real normalizeL1(real* x, int n) {
  real sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i];
  }
  // Right now, we just bet that sum won't be zero. If this really happens,
  // we will figure out what should be done then.
  CHECK_GT(sum, 0);
  real s = 1 / sum;
  for (int i = 0; i < n; ++i) {
    x[i] *= s;
  }
  return sum;
}

real LinearChainCRF::forward(real* x, int* s, int length) {
  Matrix::resizeOrCreate(maxX_, length, 1);
  Matrix::resizeOrCreate(expX_, length, numClasses_);
  Matrix::resizeOrCreate(alpha_, length, numClasses_);
  MatrixPtr matX = Matrix::create(x, length, numClasses_);
  matX->rowMax(*maxX_);
  expX_->assign(*matX);
  // subtract max to avoid overflow or underflow
  expX_->mul(maxX_, ones_, (real)-1, (real)1);
H
hedaoyuan 已提交
57
  expX_->exp2();
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65

  real* a = a_->getData();
  real* b = b_->getData();
  real* w = w_->getData();
  real* alpha = alpha_->getData();
  real* expX = expX_->getData();
  real* maxX = maxX_->getData();

H
hedaoyuan 已提交
66
  expW_->exp2(*w_);
Z
zhangjinchao01 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  real* expW = expW_->getData();

  for (int i = 0; i < numClasses_; ++i) {
    alpha[i] = exp(a[i]) * expX[i];
  }
  real ll = -maxX[0] - log(normalizeL1(alpha, numClasses_));

  for (int k = 1; k < length; ++k) {
    for (int i = 0; i < numClasses_; ++i) {
      real sum = 0;
      for (int j = 0; j < numClasses_; ++j) {
        sum += alpha[(k - 1) * numClasses_ + j]  // (*)
               * expW[j * numClasses_ + i];
      }
      alpha[k * numClasses_ + i] = expX[k * numClasses_ + i] * sum;
    }
    // normalizeL1 is to avoid underflow or overflow at (*)
    ll -= maxX[k] + log(normalizeL1(alpha + k * numClasses_, numClasses_));
  }
  real sum = 0;
  for (int i = 0; i < numClasses_; ++i) {
    sum += alpha[(length - 1) * numClasses_ + i] * exp(b[i]);
  }
  ll -= log(sum);
  // Now ll is equal to -log(Z)

  CHECK_LT(*std::max_element(s, s + length), numClasses_);
  // Calculate the nominator part, which depends on s
  ll += a[s[0]] + x[s[0]] + b[s[length - 1]];
  for (int k = 1; k < length; ++k) {
    ll += x[k * numClasses_ + s[k]] + w[s[k - 1] * numClasses_ + s[k]];
  }

  VLOG(1) << "ll=" << ll;
  return -ll;
}

104
void LinearChainCRF::backward(real* x, int* s, int length, bool needWGrad) {
Z
zhangjinchao01 已提交
105
  MatrixPtr matX = Matrix::create(x, length, numClasses_);
106
  Matrix::resizeOrCreate(matGrad_, length, numClasses_);
Z
zhangjinchao01 已提交
107 108
  Matrix::resizeOrCreate(beta_, length, numClasses_);
  real* b = b_->getData();
109 110 111 112 113 114 115
  if (needWGrad) {
    Matrix::resizeOrCreate(matWGrad_, numClasses_ + 2, numClasses_);
    matWGrad_->zeroMem();
    da_ = matWGrad_->subRowMatrix(0, 1);
    db_ = matWGrad_->subRowMatrix(1, 2);
    dw_ = matWGrad_->subRowMatrix(2, numClasses_ + 2);
  }
Z
zhangjinchao01 已提交
116 117 118 119 120

  real* alpha = alpha_->getData();
  real* beta = beta_->getData();
  real* expW = expW_->getData();
  real* expX = expX_->getData();
121
  real* grad = matGrad_->getData();
Z
zhangjinchao01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

  for (int i = 0; i < numClasses_; ++i) {
    beta[(length - 1) * numClasses_ + i] = exp(b[i]);
  }
  normalizeL1(beta + (length - 1) * numClasses_, numClasses_);

  for (int k = length - 2; k >= 0; --k) {
    for (int i = 0; i < numClasses_; ++i) {
      real sum = 0;
      for (int j = 0; j < numClasses_; ++j) {
        sum += expW[i * numClasses_ + j]  // (**)
               * beta[(k + 1) * numClasses_ + j] *
               expX[(k + 1) * numClasses_ + j];
      }
      beta[k * numClasses_ + i] = sum;
    }
    // normalizeL1 is to avoid underflow or overflow at (**)
    normalizeL1(beta + k * numClasses_, numClasses_);
  }

142 143
  matGrad_->dotMul(*alpha_, *beta_);
  matGrad_->rowNormalizeL1(*matGrad_);
Z
zhangjinchao01 已提交
144 145 146 147
  for (int k = 0; k < length; ++k) {
    grad[k * numClasses_ + s[k]] -= (real)1;
  }

148 149 150
  if (needWGrad) {
    da_->add(*matGrad_->subMatrix(/* startRow= */ 0, /* numRows= */ 1));
    db_->add(*matGrad_->subMatrix(/* startRow= */ length - 1, 1));
Z
zhangjinchao01 已提交
151

152 153 154 155 156 157 158 159 160 161 162
    beta_->dotMul(*beta_, *expX_);
    beta_->rowNormalizeL1(*beta_);

    real* dw = dw_->getData();
    for (int k = 1; k < length; ++k) {
      real sum = 0;
      for (int i = 0; i < numClasses_; ++i) {
        for (int j = 0; j < numClasses_; ++j) {
          sum += expW[i * numClasses_ + j] * alpha[(k - 1) * numClasses_ + i] *
                 beta[k * numClasses_ + j];
        }
Z
zhangjinchao01 已提交
163
      }
164 165 166 167 168 169 170
      sum = 1 / sum;
      for (int i = 0; i < numClasses_; ++i) {
        for (int j = 0; j < numClasses_; ++j) {
          dw[i * numClasses_ + j] += sum * expW[i * numClasses_ + j] *
                                     alpha[(k - 1) * numClasses_ + i] *
                                     beta[k * numClasses_ + j];
        }
Z
zhangjinchao01 已提交
171
      }
172
      dw[s[k - 1] * numClasses_ + s[k]] -= (real)1;
Z
zhangjinchao01 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    }
  }
}

void LinearChainCRF::decode(real* x, int* s, int length) {
  Matrix::resizeOrCreate(alpha_, length, numClasses_);
  real* a = a_->getData();
  real* b = b_->getData();
  real* w = w_->getData();
  IVector::resizeOrCreate(track_, numClasses_ * length, /* useGpu= */ false);
  int* track = track_->getData();
  real* alpha = alpha_->getData();

  for (int i = 0; i < numClasses_; ++i) {
    alpha[i] = a[i] + x[i];
  }
  for (int k = 1; k < length; ++k) {
    for (int i = 0; i < numClasses_; ++i) {
      real maxScore = -std::numeric_limits<real>::max();
      int maxJ = 0;
      for (int j = 0; j < numClasses_; ++j) {
        real score = alpha[(k - 1) * numClasses_ + j] + w[j * numClasses_ + i];
        if (score > maxScore) {
          maxScore = score;
          maxJ = j;
        }
      }
      alpha[k * numClasses_ + i] = maxScore + x[k * numClasses_ + i];
      track[k * numClasses_ + i] = maxJ;
    }
  }
  real maxScore = -std::numeric_limits<real>::max();
  int maxI = 0;
  for (int i = 0; i < numClasses_; ++i) {
    real score = alpha[(length - 1) * numClasses_ + i] + b[i];
    if (score > maxScore) {
      maxScore = score;
      maxI = i;
    }
  }
  s[length - 1] = maxI;
  for (int k = length - 1; k >= 1; --k) {
    s[k - 1] = maxI = track[k * numClasses_ + maxI];
  }
}

}  // namespace paddle