op_test.py 19.1 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4
import itertools
Q
Qiao Longfei 已提交
5
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
6
import collections
Q
Qiao Longfei 已提交
7 8 9 10
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
Q
qijun 已提交
34
                for sub_in_name, _ in sub_in:
Y
Yu Yang 已提交
35
                    __create_var__(in_name, sub_in_name)
36
            else:
Y
Yu Yang 已提交
37
                __create_var__(in_name, in_name)
38

Q
qijun 已提交
39
    for out_name, out_dup in Operator.get_op_outputs(op_type):
40 41 42
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
43 44
                sub_out = outputs[out_name]
                for sub_out_name, _ in sub_out:
Y
Yu Yang 已提交
45
                    __create_var__(out_name, sub_out_name)
46
            else:
Y
Yu Yang 已提交
47
                __create_var__(out_name, out_name)
48

Q
qijun 已提交
49
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
50 51
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
52 53 54 55
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
56
    def __set_input__(var_name, var):
57 58 59 60 61 62 63 64 65 66 67
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
68

Q
qijun 已提交
69
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
70 71 72
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
73
                for sub_in_name, sub_in_val in sub_in:
Y
Yu Yang 已提交
74
                    __set_input__(sub_in_name, sub_in_val)
75
            else:
Y
Yu Yang 已提交
76
                __set_input__(in_name, inputs[in_name])
77 78 79 80 81 82


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
83
                         output_names,
84 85
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
86
    # FIXME: change this method by compile time concepts
87 88 89 90 91 92
    set_input(scope, op, inputs, core.CPUPlace())

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
93
        sum = []
Y
Yancey 已提交
94
        for output_name in output_names:
D
dzhwinter 已提交
95
            op.run(scope, core.CPUPlace())
Y
Yu Yang 已提交
96 97 98
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
99 100 101

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
102 103 104 105 106
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
Y
Yancey1989 已提交
107 108
    elif tensor_to_check_dtype == core.DataType.INT64:
        tensor_to_check_dtype = np.int64
109 110 111 112 113 114 115 116 117
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
Y
Yancey1989 已提交
118 119
        elif tensor_to_check_dtype == np.int64:
            return tensor.get_int64_element(i)
120 121 122 123 124 125 126 127 128
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

129 130 131 132
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
Q
qijun 已提交
133
            set_input(scope, op, inputs, core.CPUPlace())
134 135

        # get one input element throw it's index i.
136
        origin = __get_elem__(tensor_to_check, i)
137 138
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
139
        __set_elem__(tensor_to_check, i, x_pos)
140 141 142
        y_pos = get_output()

        if in_place:
Q
qijun 已提交
143
            set_input(scope, op, inputs, core.CPUPlace())
144 145

        x_neg = origin - delta
146
        __set_elem__(tensor_to_check, i, x_neg)
147 148
        y_neg = get_output()

149
        __set_elem__(tensor_to_check, i, origin)
150 151 152 153 154
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
182
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


197
class OpTest(unittest.TestCase):
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
213 214 215 216 217 218
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
219 220 221 222 223
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
224 225 226 227 228 229 230 231 232 233 234 235
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

236
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
237 238 239 240 241 242 243 244 245 246 247 248
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
249 250 251
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
265 266 267 268
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
269 270

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
271 272 273
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
274 275 276 277 278 279 280 281 282 283
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

284 285
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
286 287 288 289
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
                for sub_out_name, expect in sub_out:
Y
Yang Yang(Tony) 已提交
290
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
291 292
                    actual = outs[idx]
                    actual_t = np.array(actual)
293 294
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
295 296
                    self.assertTrue(
                        np.allclose(
297
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
298 299
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
300 301
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
302 303
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
304
            else:
Y
Yang Yang(Tony) 已提交
305
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
306 307
                actual = outs[idx]
                actual_t = np.array(actual)
308
                expect = self.outputs[out_name]
309
                expect_t = expect[0] if isinstance(expect, tuple) else expect
310 311
                self.assertTrue(
                    np.allclose(
312
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
313
                    "Output (" + out_name + ") has diff at " + str(place))
314
                if isinstance(expect, tuple):
Q
QI JUN 已提交
315
                    self.assertListEqual(actual.lod(), expect[1],
316 317
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
318

319
    def check_output(self, atol=1e-5):
Q
qijun 已提交
320
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
321
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
Q
qijun 已提交
322 323
            places.append(core.GPUPlace(0))
        for place in places:
324
            self.check_output_with_place(place, atol)
Q
qijun 已提交
325

326 327 328 329 330 331 332 333 334 335 336 337
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
338
                return ("%s Variable %s max gradient diff %f over limit %f, "
339
                        "the first error element is %d, %f, %f") % (
340
                            msg_prefix, name, max_diff, max_relative_error,
341
                            offset, a.flatten()[offset], b.flatten()[offset])
342 343 344 345 346

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
347
                   output_names,
348
                   no_grad_set=None,
349
                   numeric_grad_delta=0.005,
350
                   in_place=False,
Q
Qiao Longfei 已提交
351 352
                   max_relative_error=0.005,
                   user_defined_grads=None):
353
        self.scope = core.Scope()
Q
qijun 已提交
354
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
355
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
356
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
357
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
358
                            op_attrs)
359 360 361
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
362 363
        if not type(output_names) is list:
            output_names = [output_names]
Q
Qiao Longfei 已提交
364
        numeric_grads = user_defined_grads or [
365 366 367 368 369
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
370
                output_names,
371
                delta=numeric_grad_delta,
372 373
                in_place=in_place) for input_to_check in inputs_to_check
        ]
Q
qijun 已提交
374
        cpu_place = core.CPUPlace()
Y
Yu Yang 已提交
375 376
        cpu_analytic_grads = self._get_gradient(inputs_to_check, cpu_place,
                                                output_names, no_grad_set)
377

Y
Yu Yang 已提交
378 379
        self.__assert_is_close(numeric_grads, cpu_analytic_grads,
                               inputs_to_check, max_relative_error,
Q
qijun 已提交
380 381 382 383
                               "Gradient Check On %s" % str(cpu_place))

        if core.is_compile_gpu() and self.op.support_gpu():
            gpu_place = core.GPUPlace(0)
Y
Yu Yang 已提交
384 385
            gpu_analytic_grads = self._get_gradient(inputs_to_check, gpu_place,
                                                    output_names, no_grad_set)
386

Q
qijun 已提交
387
            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
Y
Yu Yang 已提交
388
                                   inputs_to_check, max_relative_error,
Q
qijun 已提交
389 390
                                   "Gradient Check On %s" % str(gpu_place))

Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
405 406 407 408 409
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
450
        op = block.append_op(
Y
Yu Yang 已提交
451 452 453 454 455
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
456 457 458
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
459 460
        mean_inputs = map(block.var, output_names)
        if len(mean_inputs) == 1:
F
fengjiayi 已提交
461
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
462
            op = block.append_op(
Y
Yu Yang 已提交
463
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
464 465
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
466 467 468
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
469
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
470
                op = block.append_op(
Y
Yu Yang 已提交
471 472 473
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
474 475
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
476 477
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
478
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
479
            op_sum = block.append_op(
Y
Yu Yang 已提交
480
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
481 482
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
483

F
fengjiayi 已提交
484
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
485
            op_loss = block.append_op(
Y
Yu Yang 已提交
486 487 488 489
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
490 491
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
492 493 494 495 496 497 498 499 500 501 502

        param_grad_list = append_backward_ops(
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
503 504 505
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))