prior_box_op.cc 6.7 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/prior_box_op.h"

namespace paddle {
namespace operators {

class PriorBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
W
wanghaox 已提交
26
                   "Input(X) of PriorBoxOp should not be null.");
W
wanghaox 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("Image"),
W
wanghaox 已提交
28
                   "Input(Offset) of PriorBoxOp should not be null.");
W
wanghaox 已提交
29 30 31

    auto image_dims = ctx->GetInputDim("Image");
    auto input_dims = ctx->GetInputDim("Input");
W
wanghaox 已提交
32 33
    PADDLE_ENFORCE(image_dims.size() == 4, "The format of image is NCHW.");
    PADDLE_ENFORCE(input_dims.size() == 4, "The format of input is NCHW.");
W
wanghaox 已提交
34 35 36 37 38 39

    PADDLE_ENFORCE_LT(input_dims[2], image_dims[2],
                      "The height of input must smaller than image.");

    PADDLE_ENFORCE_LT(input_dims[3], image_dims[3],
                      "The width of input must smaller than image.");
W
wanghaox 已提交
40 41 42 43

    auto min_sizes = ctx->Attrs().Get<std::vector<int>>("min_sizes");
    auto max_sizes = ctx->Attrs().Get<std::vector<int>>("max_sizes");
    auto variances = ctx->Attrs().Get<std::vector<float>>("variances");
W
wanghaox 已提交
44
    auto aspect_ratios = ctx->Attrs().Get<std::vector<float>>("aspect_ratios");
W
wanghaox 已提交
45 46
    bool flip = ctx->Attrs().Get<bool>("flip");

W
wanghaox 已提交
47 48
    PADDLE_ENFORCE_GT(min_sizes.size(), 0,
                      "Size of min_size must be at least 1.");
W
wanghaox 已提交
49 50 51 52
    for (size_t i = 0; i < min_sizes.size(); ++i) {
      PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i);
    }

W
wanghaox 已提交
53 54
    std::vector<float> aspect_ratios_vec;
    ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec);
W
wanghaox 已提交
55

W
wanghaox 已提交
56
    int num_priors = aspect_ratios_vec.size() * min_sizes.size();
W
wanghaox 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    if (max_sizes.size() > 0) {
      PADDLE_ENFORCE_EQ(max_sizes.size(), min_sizes.size(),
                        "The length of min_size and max_size must be equal.");
      for (size_t i = 0; i < min_sizes.size(); ++i) {
        PADDLE_ENFORCE_GT(max_sizes[i], min_sizes[i],
                          "max_size[%d] must be greater than min_size[%d].", i,
                          i);
        num_priors += 1;
      }
    }

    if (variances.size() > 1) {
      PADDLE_ENFORCE_EQ(variances.size(), 4,
                        "Must and only provide 4 variance.");
      for (size_t i = 0; i < variances.size(); ++i) {
        PADDLE_ENFORCE_GT(variances[i], 0.0,
                          "variance[%d] must be greater than 0.", i);
      }
    }

    const float step_h = ctx->Attrs().Get<float>("step_h");
    PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0.");
    const float step_w = ctx->Attrs().Get<float>("step_w");
    PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0.");

W
wanghaox 已提交
82 83 84 85 86 87 88
    std::vector<int64_t> dim_vec(4);
    dim_vec[0] = input_dims[2];
    dim_vec[1] = input_dims[3];
    dim_vec[2] = num_priors;
    dim_vec[3] = 4;
    ctx->SetOutputDim("Boxes", framework::make_ddim(dim_vec));
    ctx->SetOutputDim("Variances", framework::make_ddim(dim_vec));
W
wanghaox 已提交
89 90 91 92 93
  }
};

class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
wanghaox 已提交
94
  PriorBoxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaox 已提交
95 96
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
W
wanghaox 已提交
97 98
             "(Tensor, default Tensor<float>), "
             "the input feature data of PriorBoxOp, The format is NCHW.");
W
wanghaox 已提交
99
    AddInput("Image",
W
wanghaox 已提交
100 101
             "(Tensor, default Tensor<float>), "
             "the input image data of PriorBoxOp, The format is NCHW.");
W
wanghaox 已提交
102
    AddOutput("Boxes",
W
wanghaox 已提交
103
              "(Tensor, default Tensor<float>), the output prior boxes of "
W
wanghaox 已提交
104 105
              "PriorBoxOp. The format is [layer_height, layer_width, "
              "num_priors, 4]. layer_height is the height of input, "
106
              "layer_width is the width of input, num_priors is the box "
W
wanghaox 已提交
107 108 109 110 111
              "count of each position.");
    AddOutput("Variances",
              "(Tensor, default Tensor<float>), the expanded variances of "
              "PriorBoxOp. The format is [layer_height, layer_width, "
              "num_priors, 4]. layer_height is the height of input, "
112
              "layer_width is the width of input, num_priors is the box "
W
wanghaox 已提交
113
              "count of each position.");
W
wanghaox 已提交
114 115 116
    AddAttr<std::vector<int>>("min_sizes", "(vector<int>) ",
                              "List of min sizes of generated prior boxes.");
    AddAttr<std::vector<int>>("max_sizes", "(vector<int>) ",
W
wanghaox 已提交
117
                              "List of max sizes of generated prior boxes.");
W
wanghaox 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    AddAttr<std::vector<float>>(
        "aspect_ratios", "(vector<float>) ",
        "List of aspect ratios of generated prior boxes.")
        .SetDefault({});
    AddAttr<std::vector<float>>(
        "variances", "(vector<float>) ",
        "List of variances to be encoded in prior boxes.")
        .SetDefault({0.1});
    AddAttr<bool>("flip", "(bool) ", "Whether to flip aspect ratios.")
        .SetDefault(true);
    AddAttr<bool>("clip", "(bool) ", "Whether to clip out-of-boundary boxes.")
        .SetDefault(true);
    AddAttr<float>("step_w",
                   "Prior boxes step across width, 0 for auto calculation.")
        .SetDefault(0.0);
    AddAttr<float>("step_h",
                   "Prior boxes step across height, 0 for auto calculation.")
        .SetDefault(0.0);
    AddAttr<float>("offset",
                   "(float) "
                   "Prior boxes center offset.")
        .SetDefault(0.5);
    AddComment(R"DOC(
Prior box operator
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
W
wanghaox 已提交
143 144 145 146 147
Each position of the input produce N prior boxes, N is determined by
 the count of min_sizes, max_sizes and aspect_ratios, The size of the
 box is in range(min_size, max_size) interval, which is generated in
 sequence according to the aspect_ratios.

W
wanghaox 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
Please get more information from the following papers:
https://arxiv.org/abs/1512.02325.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker);
REGISTER_OP_CPU_KERNEL(
    prior_box, ops::PriorBoxOpKernel<paddle::platform::CPUPlace, float>,
    ops::PriorBoxOpKernel<paddle::platform::CPUPlace, double>);