eigh_op.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/eigh_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class EighOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Eigh");
    OP_INOUT_CHECK(ctx->HasOutput("Eigenvalues"), "Output", "Eigenvalues",
                   "Eigh");
    OP_INOUT_CHECK(ctx->HasOutput("Eigenvectors"), "Output", "Eigenvectors",
                   "Eigh");

    auto input_dim = ctx->GetInputDim("X");
    auto rank = input_dim.size();

    PADDLE_ENFORCE_GE(rank, 2,
                      platform::errors::InvalidArgument(
                          "The Input(X) should have at least 2 dimensions."
                          "But received a %d dimension tensor.",
                          rank));
    PADDLE_ENFORCE_EQ(
        input_dim[rank - 2], input_dim[rank - 1],
        platform::errors::InvalidArgument(
            "Eigh op is designed for square matrix, consequently"
            "inner-most 2 dimensions of Input(X) should be symmetric."
            "But received X's shape[-2] = %d and shape[-1] = %d.",
            input_dim[rank - 2], input_dim[rank - 1]));

    std::vector<int64_t> values_dim;
50 51 52

    for (auto i = 0; i < rank - 1; i++) {
      values_dim.emplace_back(input_dim[i]);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    }

    ctx->SetOutputDim("Eigenvalues", framework::make_ddim(values_dim));
    ctx->SetOutputDim("Eigenvectors", input_dim);
  }
};

class EignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), Hermitian or real symmetric matrices."
             "Its shape should be [*, N, N] where * is zero or"
             "more batch dimensions. The data type is float32 ,"
             "float64, complex64, complex128.");
    AddOutput("Eigenvalues",
              "(Tensor), The eigenvalues in ascending order."
              "The data type is float32 or float64.");
    AddOutput(
        "Eigenvectors",
        "(Tensor), The column is the normalized eigenvector "
        "corresponding to the eigenvalue. The data type is the same as ``X``.");
    AddAttr<std::string>(
        "UPLO",
        "(string, default 'L'), 'L' represents the lower triangular matrix,"
        "'U' represents the upper triangular matrix.")
        .SetDefault("L");
    AddComment(R"DOC(
Eigh Operator.

Computes the eigenvalues and eigenvectors of a complex Hermitian
 (conjugate symmetric) or a real symmetric matrix.

)DOC");
  }
};

class EighGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Eigenvalues"), "Input", "Eigenvalues",
                   "EighGrad");
    OP_INOUT_CHECK(ctx->HasInput("Eigenvectors"), "Input", "Eigenvectors",
                   "EighGrad");
99
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Eigenvalues")),
100
                   "Input", "Eigenvalues@GRAD", "EighGrad");
101
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Eigenvectors")),
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                   "Input", "Eigenvectors@GRAD", "EighGrad");
    auto dims = ctx->GetInputDim("Eigenvectors");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(
            ctx, framework::GradVarName("Eigenvectors")),
        ctx.device_context());
  }
};

template <typename T>
class EighGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Eigenvalues", this->Output("Eigenvalues"));
    op->SetInput("Eigenvectors", this->Output("Eigenvectors"));
    op->SetInput(framework::GradVarName("Eigenvalues"),
                 this->OutputGrad("Eigenvalues"));
    op->SetInput(framework::GradVarName("Eigenvectors"),
                 this->OutputGrad("Eigenvectors"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(eigh, ops::EighOp, ops::EignOpMaker,
                  ops::EighGradOpMaker<paddle::framework::OpDesc>,
                  ops::EighGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(eigh_grad, ops::EighGradOp);

REGISTER_OP_CPU_KERNEL(
150 151 152
    eigh, ops::EighKernel<paddle::platform::CPUDeviceContext, float>,
    ops::EighKernel<paddle::platform::CPUDeviceContext, double>,
    ops::EighKernel<paddle::platform::CPUDeviceContext,
153
                    paddle::platform::complex<float>>,
154
    ops::EighKernel<paddle::platform::CPUDeviceContext,
155 156 157
                    paddle::platform::complex<double>>);

REGISTER_OP_CPU_KERNEL(
158 159 160
    eigh_grad, ops::EighGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::EighGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::EighGradKernel<paddle::platform::CPUDeviceContext,
161
                        paddle::platform::complex<float>>,
162
    ops::EighGradKernel<paddle::platform::CPUDeviceContext,
163
                        paddle::platform::complex<double>>);