DepthwiseConvLayer.cpp 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DepthwiseConvLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
18
#include <iostream>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

namespace paddle {

/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
REGISTER_LAYER(depthwise_conv, DepthwiseConvLayer);

bool DepthwiseConvLayer::init(const LayerMap &layerMap,
                              const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
  ExpandConvBaseLayer::init(layerMap, parameterMap);

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
  multiplierShape_.resize(numInputs);
  weightMultiplier_.resize(numInputs);

  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
    Matrix::resizeOrCreate(weightMultiplier_[i],
                           (size_t)outputH_[i] * (size_t)outputW_[i],
                           (size_t)1,
                           false,
                           useGpu_);
    weightMultiplier_[i]->one();
    createFunction(forward_,
                   "DepthwiseConv",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));

    createFunction(backward_,
                   "DepthwiseConvGradInput",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));

    createFunction(backward_,
                   "DepthwiseConvGradFilter",
                   FuncConfig()
                       .set("paddings", paddings)
                       .set("strides", strides)
                       .set("groups", (size_t)groups_[i]));
  }
  return true;
}

// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

void DepthwiseConvLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
83
  // std::cout << "outputSize" << getOutputSize() <<std::endl;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  resetOutput(batchSize, getOutputSize());

  // Calculate the shape of the input, output, and filter.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    multiplierShape_[i] =
        TensorShape({(size_t)outputH_[i] * (size_t)outputW_[i], (size_t)1});
    filterShape_[i] = TensorShape({(size_t)groups_[i],
                                   (size_t)numFilters_ / groups_[i],
                                   (size_t)channels_[i] / groups_[i],
                                   (size_t)filterSizeY_[i],
                                   (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
  }

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
    outputs.addArg(
        *getOutputValue(), outputShape_[i], i == 0 ? ASSIGN_TO : ADD_TO);

    forward_[i]->calc(inputs, outputs);
  }

  /* add the bias-vector */
  if (biases_.get()) {
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void DepthwiseConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  // Calculate the input grad and filter grad.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
    }

    if (weights_[i]->getWGrad()) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*getInputValue(i), inputShape_[i]);
      inputs.addArg(*weightMultiplier_[i], multiplierShape_[i]);
      // weight_multiplier
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle