auc_kernel.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/auc_kernel.h"
16
#include <glog/logging.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

inline static double trapezoidArea(double X1, double X2, double Y1, double Y2) {
  return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
}

template <typename T>
void statAuc(const DenseTensor &label,
             const DenseTensor &predict,
             const int num_thresholds,
             const int slide_steps,
             int64_t *origin_stat_pos,
32 33
             int64_t *origin_stat_neg,
             const bool is_fake_data) {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  size_t batch_size = predict.dims()[0];
  size_t inference_width = predict.dims()[1];
  const T *inference_data = predict.data<T>();
  const auto *label_data = label.data<int64_t>();
  const int bucket_length = num_thresholds + 1;
  if (slide_steps == 0) {
    for (size_t i = 0; i < batch_size; i++) {
      // if predict_data[i] has dim of 2, then predict_data[i][1] is pos prob
      // if predict_data[i] has dim of 1, then predict_data[i][0] is pos prob
      auto predict_data =
          inference_data[i * inference_width + (inference_width - 1)];
      PADDLE_ENFORCE_LE(predict_data,
                        1,
                        phi::errors::PreconditionNotMet(
                            "The predict data must less or equal 1."));
      PADDLE_ENFORCE_GE(predict_data,
                        0,
                        phi::errors::PreconditionNotMet(
                            "The predict data must gather or equal 0."));

      uint32_t binIdx = static_cast<uint32_t>(predict_data * num_thresholds);
      if (label_data[i] > 0) {
        origin_stat_pos[binIdx] += 1;
      } else if (label_data[i] == 0) {
        origin_stat_neg[binIdx] += 1;
      }
    }
    return;
  }
  // the last number of origin_stat_pos store the index should be used in
  // current step
  int cur_step_index =
      static_cast<int>(origin_stat_pos[(slide_steps + 1) * bucket_length]) %
      slide_steps;
  int cur_step_begin = cur_step_index * bucket_length;
  int sum_step_begin = slide_steps * bucket_length;
  for (int i = 0; i < bucket_length; ++i) {
    origin_stat_pos[sum_step_begin + i] -= origin_stat_pos[cur_step_begin + i];
    origin_stat_neg[sum_step_begin + i] -= origin_stat_neg[cur_step_begin + i];
  }

  std::memset(
      origin_stat_pos + cur_step_begin, 0, bucket_length * sizeof(int64_t));
  std::memset(
      origin_stat_neg + cur_step_begin, 0, bucket_length * sizeof(int64_t));

  for (size_t i = 0; i < batch_size; i++) {
    // if predict_data[i] has dim of 2, then predict_data[i][1] is pos prob
    // if predict_data[i] has dim of 1, then predict_data[i][0] is pos prob
    auto predict_data =
        inference_data[i * inference_width + (inference_width - 1)];
    PADDLE_ENFORCE_LE(predict_data,
                      1,
                      phi::errors::PreconditionNotMet(
                          "The predict data must less or equal 1."));
    PADDLE_ENFORCE_GE(predict_data,
                      0,
                      phi::errors::PreconditionNotMet(
                          "The predict data must gather or equal 0."));

    uint32_t binIdx = static_cast<uint32_t>(predict_data * num_thresholds);
    if (label_data[i] > 0) {
      origin_stat_pos[cur_step_begin + binIdx] += 1;
    } else if (label_data[i] == 0) {
      origin_stat_neg[cur_step_begin + binIdx] += 1;
    }
  }
101 102 103 104 105 106 107
  if (!is_fake_data) {
    for (int i = 0; i < bucket_length; ++i) {
      origin_stat_pos[sum_step_begin + i] +=
          origin_stat_pos[cur_step_begin + i];
      origin_stat_neg[sum_step_begin + i] +=
          origin_stat_neg[cur_step_begin + i];
    }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  }
}

inline static void calcAuc(const int64_t *stat_pos,
                           const int64_t *stat_neg,
                           int num_thresholds,
                           double *auc) {
  *auc = 0.0f;

  double totPos = 0.0;
  double totNeg = 0.0;
  double totPosPrev = 0.0;
  double totNegPrev = 0.0;

  int idx = num_thresholds;

  while (idx >= 0) {
    totPosPrev = totPos;
    totNegPrev = totNeg;
    totPos += stat_pos[idx];
    totNeg += stat_neg[idx];
    *auc += trapezoidArea(totNeg, totNegPrev, totPos, totPosPrev);
    --idx;
  }

  if (totPos > 0.0 && totNeg > 0.0) {
    *auc = *auc / totPos / totNeg;
  }
}

template <typename T, typename Context>
void AucKernel(const Context &dev_ctx,
               const DenseTensor &input,
               const DenseTensor &label,
               const DenseTensor &stat_pos,
               const DenseTensor &stat_neg,
144
               const paddle::optional<DenseTensor> &ins_tag_weight,
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
               const std::string &curve,
               int num_thresholds,
               int slide_steps,
               DenseTensor *auc,
               DenseTensor *stat_pos_out,
               DenseTensor *stat_neg_out) {
  // Only use output var for now, make sure it's persistable and
  // not cleaned up for each batch.
  auto *origin_stat_pos = dev_ctx.template Alloc<int64_t>(stat_pos_out);
  auto *origin_stat_neg = dev_ctx.template Alloc<int64_t>(stat_neg_out);
  auto *auc_value = dev_ctx.template Alloc<double>(auc);

  // Just for pass UT, since UT's input & output connot be set same var
  auto *stat_pos_in_tensor = &stat_pos;
  auto *stat_neg_in_tensor = &stat_neg;
  auto *pos_in_data = stat_pos.data<int64_t>();
  auto *neg_in_data = stat_neg.data<int64_t>();
162 163 164 165 166 167 168 169
  bool is_fake_data = false;
  if (ins_tag_weight.get_ptr() != nullptr) {
    const auto *ins_tag_weight_data = ins_tag_weight->data<float>();
    VLOG(4) << "auc ins_tag_weight = " << ins_tag_weight_data[0];
    if (ins_tag_weight_data[0] == 0) {
      is_fake_data = true;
    }
  }
170 171 172 173 174 175 176 177 178 179 180 181 182 183
  if (stat_pos_in_tensor != stat_pos_out) {
    memcpy(
        origin_stat_pos,
        pos_in_data,
        ((1 + slide_steps) * (num_thresholds + 1) + (slide_steps > 0 ? 1 : 0)) *
            sizeof(int64_t));
  }
  if (stat_neg_in_tensor != stat_neg_out) {
    memcpy(
        origin_stat_neg,
        neg_in_data,
        ((1 + slide_steps) * (num_thresholds + 1) + (slide_steps > 0 ? 1 : 0)) *
            sizeof(int64_t));
  }
184 185 186 187 188

  // when calculate global_auc && is fake data, just do nothing
  if (slide_steps == 0 && is_fake_data) {
    return;
  }
189 190 191 192 193
  statAuc<T>(label,
             input,
             num_thresholds,
             slide_steps,
             origin_stat_pos,
194 195
             origin_stat_neg,
             is_fake_data);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

  int sum_offset = slide_steps * (num_thresholds + 1);
  calcAuc(origin_stat_pos + sum_offset,
          origin_stat_neg + sum_offset,
          num_thresholds,
          auc_value);
  if (slide_steps) {
    origin_stat_pos[(slide_steps + 1) * (num_thresholds + 1)] += 1;
    origin_stat_neg[(slide_steps + 1) * (num_thresholds + 1)] += 1;
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(auc, CPU, ALL_LAYOUT, phi::AucKernel, float) {}