io.py 11.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import cPickle as pickle
17

18
from paddle.v2.fluid.evaluator import Evaluator
Y
Yu Yang 已提交
19
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
K
fix bug  
Kexin Zhao 已提交
20
from . import core
21 22

__all__ = [
23 24 25 26 27 28 29 30 31
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'get_inference_program',
32 33 34 35
]


def is_parameter(var):
K
Kavya Srinet 已提交
36
    """Check whether the variable is a Parameter.
37 38 39 40 41 42 43

    This function checks whether the input variable is a Parameter.

    Args:
        var : The input variable.

    Returns:
K
Kavya Srinet 已提交
44
        boolean result whether the variable is a Parameter.
45
    """
46 47 48 49 50 51 52 53 54 55 56 57
    return isinstance(var, Parameter)


def is_persistable(var):
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
58
        dtype=var.dtype,
59 60 61 62 63
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


64
def save_vars(executor, dirname, main_program=None, vars=None, predicate=None):
65 66
    """
    Save variables to directory by executor.
67

68 69
    :param executor: executor that save variable
    :param dirname: directory path
X
xuwei06 已提交
70
    :param main_program: program. If vars is None, then filter all variables in this
71
    program which fit `predicate`. Default default_main_program.
72 73 74 75 76 77 78
    :param predicate: The Predicate describes a callable that returns a variable
    as a bool. If it returns true, the variables will be saved.
    :param vars: variables need to be saved. If specify vars, program & predicate
    will be ignored
    :return: None
    """
    if vars is None:
79
        if main_program is None:
Y
Yu Yang 已提交
80
            main_program = default_main_program()
81
        if not isinstance(main_program, Program):
82 83 84 85 86
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
87
            vars=filter(predicate, main_program.list_vars()))
88 89 90 91 92 93 94 95 96 97 98 99 100
    else:
        save_program = Program()
        save_block = save_program.global_block()
        for each_var in vars:
            new_var = _clone_var_in_block_(save_block, each_var)
            save_block.append_op(
                type='save',
                inputs={'X': [new_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, new_var.name)})
        executor.run(save_program)


101
def save_params(executor, dirname, main_program=None):
102 103 104 105 106 107
    """
    Save all parameters to directory with executor.
    """
    save_vars(
        executor,
        dirname=dirname,
108
        main_program=main_program,
109 110 111 112
        vars=None,
        predicate=is_parameter)


113
def save_persistables(executor, dirname, main_program=None):
114 115 116 117 118 119
    """
    Save all persistables to directory with executor.
    """
    save_vars(
        executor,
        dirname=dirname,
120
        main_program=main_program,
121 122 123 124
        vars=None,
        predicate=is_persistable)


125
def load_vars(executor, dirname, main_program=None, vars=None, predicate=None):
126 127
    """
    Load variables from directory by executor.
128

129 130
    :param executor: executor that save variable
    :param dirname: directory path
X
xuwei06 已提交
131
    :param main_program: program. If vars is None, then filter all variables in this
Y
Yu Yang 已提交
132
    program which fit `predicate`. Default default_main_program().
133 134
    :param predicate: The Predicate describes a callable that returns a variable
    as a bool. If it returns true, the variables will be loaded.
X
xuwei06 已提交
135
    :param vars: variables need to be loaded. If specify vars, program &
136 137 138 139
    predicate will be ignored
    :return: None
    """
    if vars is None:
140
        if main_program is None:
Y
Yu Yang 已提交
141
            main_program = default_main_program()
142
        if not isinstance(main_program, Program):
143 144 145 146 147
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
148
            vars=filter(predicate, main_program.list_vars()))
149 150 151 152 153 154 155 156 157 158 159
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
        for each_var in vars:
            assert isinstance(each_var, Variable)
            new_var = _clone_var_in_block_(load_block, each_var)
            load_block.append_op(
                type='load',
                inputs={},
                outputs={"Out": [new_var]},
                attrs={'file_path': os.path.join(dirname, new_var.name)})
160

161 162 163
        executor.run(load_prog)


164
def load_params(executor, dirname, main_program=None):
165 166 167 168
    """
    load all parameters from directory by executor.
    """
    load_vars(
169 170 171 172
        executor,
        dirname=dirname,
        main_program=main_program,
        predicate=is_parameter)
173 174


175
def load_persistables(executor, dirname, main_program=None):
176 177 178 179
    """
    load all persistables from directory by executor.
    """
    load_vars(
180 181 182 183
        executor,
        dirname=dirname,
        main_program=main_program,
        predicate=is_persistable)
184 185


186 187
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
188
        main_program = default_main_program()
189 190
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
191 192 193 194 195 196 197 198
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
            vars.append(var.states)
            vars.append(var.metrics)
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
199 200 201 202
    inference_program = pruned_program.inference_optimize()
    return inference_program


K
Kexin Zhao 已提交
203 204 205 206 207 208
def prepend_feed_ops(inference_program, feeded_var_names):
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
        name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True)

    for i, name in enumerate(feeded_var_names):
K
fix bug  
Kexin Zhao 已提交
209
        out = global_block.var(name)
K
Kexin Zhao 已提交
210 211 212
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
213
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            attrs={'col': i})


def append_fetch_ops(inference_program, fetch_var_names):
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
        name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True)

    for i, name in enumerate(fetch_var_names):
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


230 231 232 233
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
234
                         main_program=None):
235
    """
X
xuwei06 已提交
236
    Build a model especially for inference,
237 238 239 240 241 242
    and save it to directory by the executor.

    :param dirname: directory path
    :param feeded_var_names: Names of variables that need to be feeded data during inference
    :param target_vars: Variables from which we can get inference results.
    :param executor: executor that save inference model
X
xuwei06 已提交
243
    :param main_program: original program, which will be pruned to build the inference model.
Y
Yu Yang 已提交
244
            Default default_main_program().
245 246 247

    :return: None
    """
F
fengjiayi 已提交
248 249 250 251 252 253 254 255
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
        if not (bool(feeded_var_names) and all(
                isinstance(name, basestring) for name in feeded_var_names)):
            raise ValueError("'feed_var_names' should be a list of str.")

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
256
        target_vars = [target_vars]
F
fengjiayi 已提交
257 258 259 260 261
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

262
    if main_program is None:
Y
Yu Yang 已提交
263
        main_program = default_main_program()
264 265 266 267

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

268 269
    pruned_program = main_program.prune(targets=target_vars)
    inference_program = pruned_program.inference_optimize()
270 271 272 273 274
    fetch_var_names = [v.name for v in target_vars]

    model_file_name = dirname + "/__model__"
    with open(model_file_name, "w") as f:
        pickle.dump({
275
            "program_desc_str": inference_program.desc.serialize_to_string(),
276 277 278 279
            "feed_var_names": feeded_var_names,
            "fetch_var_names": fetch_var_names
        }, f, -1)

K
Kexin Zhao 已提交
280 281
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
282

283 284 285 286 287
    # Save only programDesc of inference_program in binary format
    # in another file: __model__.dat
    with open(model_file_name + ".dat", "wb") as fp:
        fp.write(inference_program.desc.serialize_to_string())

288
    save_params(executor, dirname, main_program)
289 290


291
def load_persistables_if_exist(executor, dirname, main_program=None):
292 293 294 295 296 297 298 299 300 301 302 303
    filenames = next(os.walk(dirname))[2]
    filenames = set(filenames)

    def _is_presistable_and_exist_(var):
        if not is_persistable(var):
            return False
        else:
            return var.name in filenames

    load_vars(
        executor,
        dirname,
304
        main_program=main_program,
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        vars=None,
        predicate=_is_presistable_and_exist_)


def load_inference_model(dirname, executor):
    """
    Load inference model from a directory

    :param dirname: directory path
    :param executor: executor that load inference model

    :return: [program, feed_var_names, fetch_var_names]
             program: program especially for inference.
             feeded_var_names: Names of variables that need to feed data
             fetch_vars: Variables from which we can get inference results.
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

    model_file_name = dirname + "/__model__"
    model = pickle.load(open(model_file_name, "r"))
    program_desc_str = model["program_desc_str"]
    feed_var_names = model["feed_var_names"]
    fetch_var_names = model["fetch_var_names"]
    program = Program.parse_from_string(program_desc_str)
    load_persistables_if_exist(executor, dirname, program)
    fetch_vars = [program.global_block().var(name) for name in fetch_var_names]

    return [program, feed_var_names, fetch_vars]
X
xuwei06 已提交
334 335 336 337 338 339 340 341 342 343


def get_parameter_value(para, executor):
    """
    Get the LoDTensor for the parameter

    :param executor: executor for retrieving the value
    :param para: the given parameter
    :return: the LoDTensor for the parameter
    """
X
xuwei06 已提交
344 345
    assert is_parameter(para)

X
xuwei06 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
    Get the LoDTensor for paramter with the given name

    :param executor: executor for retrieving the value
    :param name: the name of the parameter
    :param program: the program where the variable is found
Y
Yu Yang 已提交
359
            Default default_main_program().
X
xuwei06 已提交
360 361 362
    :return: the LoDTensor for the variable
    """
    if program is None:
Y
Yu Yang 已提交
363
        program = default_main_program()
X
xuwei06 已提交
364 365
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)