PyDataProviderWrapper.py 26.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This module provide a wrapper(decorator) to wrap a data process method into a
PyDataProvider. Some examples are shown `here <data_provider/python_case.html>`_.
"""

import struct
import array
import random
import gc
import logging
import pstats
import sys
import numpy
import functools

__all__ = [
    'DenseSlot', 'SlotType', 'SparseNonValueSlot', 'StringSlot',
    'SparseValueSlot', 'IndexSlot', 'PoolSize', 'GeneralPyDataProvider',
    'provider', 'init_hook_wrapper'
]

try:  # Just for profile mode, will try to import cProfile first.
    # Most python will contains cProfile, cProfile/profile are basically same.
    # ref: https://docs.python.org/2/library/profile.html#introduction-to-the-profilers
    import cProfile as profile
except ImportError:
    import profile

try:
    import cPickle as pickle
except ImportError:
    import pickle

import io

class SlotType(object):  # Just a hint for user.
    pass


class DenseSlot(SlotType):
    """
    Dense Slot Type: Each item is the value of a Dense Vector.

    Its yield format for :code:`provider` is:

    - **NonSeq**: [float, float, ... ]
    - **Seq**: [[float, float, ...], [float, float ....], ... ]
    - **SubSeq**: [[[float, float, ...], [float ....], ...] ,  \
                   [[float, float, ...], [float ....], ...] , ...]
    """

    def __init__(self, dim):
        """
        :param dim: slot dimension
        :type dim: int
        """
        self.dim = dim
        self.type = 0


class SparseNonValueSlot(SlotType):
    """
    Sparse NonValue Slot Type: Each item is the id of a Sparse Vector.

    Its yield format for :code:`provider` is:

    - **NonSeq**: [int, int, ...]
    - **Seq**: [[int, int, ...], [int, int, ...], ... ]
    - **SubSeq**: [[[int, int, ...], [int, ....], ...] ,  \
                   [[int, int, ...], [int, ....], ...] , ...]
    """
    def __init__(self, dim):
        """
        :param dim: slot dimension
        :type dim: int
        """
        self.dim = dim
        self.type = 1


class SparseValueSlot(SlotType):
    """
    Sparse Value Slot Type: Each item is the id and value of a Sparse Vector.

    Its yield format for :code:`provider` is:

    - **NonSeq**: [(int, float), (int, float), ... ]
    - **Seq**: [[(int,float), (int, float), ... ], \
                [(int, float), (int, float), ...], ... ]
    - **SubSeq**: [[[(int,float), ...], [(int, float), ....], ...] ,  \
                   [[(int,float), ...], [(int, float), ....], ...] , ...]
    """

    def __init__(self, dim):
        """
        :param dim: slot dimension.
        :type dim: int
        """
        self.dim = dim
        self.type = 2


class IndexSlot(SlotType):
    """
    Index Value Slot Type: Each item is the id of Label.

    Its yield format for :code:`provider` is:

    - **NonSeq**: int
    - **Seq**:  [int, int, ....]
    - **SubSeq**: [[int, int, ...], [int, int, ...], ... ]
    """

    def __init__(self, dim):
        """
        :param dim: slot dimension
        :type dim: int
        """
        self.dim = dim
        self.type = 3


class StringSlot(SlotType):
    """
    String Value Slot Type: Each item is a string for printout, \
                            can be used in DataLayer too.

    Its yield format for :code:`provider` is:

    - **NonSeq**: string
    - **Seq**: [string, string, ....]
    - **SubSeq**:  [[string, string, ...], [string, string, ...], ... ]
    """

    def __init__(self, dim):
        """
        :param dim: slot dimension
        :type dim: string
        """
        self.dim = dim
        self.type = 6


class SparseNonValueHandler(object):
    """
    Private Class, Use for converting python object to paddle string.
    """

    def __init__(self):
        self.offsets = []
        self.value = []
        self.offset_count = 0

    def __call__(self, ele):
        """
        It will be invoked when scan each sparse data.

        :param ele: list of sparse data, maybe non-value [ idx, ... ] or value.
                    [ (idx, val), ... ]
        :type ele: list
        """
        self.offsets.append(self.offset_count)
        self.offset_count += len(ele)
        self.processElement(ele)

    def processElement(self, ele):
        """
        Process for element list. See __call__ for more document.
        """
        self.value += ele

    def done(self, data_stream, int_packer):
        """
        Dump data to stream.
        :param data_stream: Output Stream.
        :param int_packer:  A struct.Struct("i") object
        """
        data_stream.write(array.array("i", self.offsets).tostring())
        data_stream.write(int_packer.pack(self.offset_count))
        data_stream.write(array.array("i", self.value).tostring())


class SparseValueHandler(SparseNonValueHandler):
    """
    Private class, use for converting python obj to paddle string.
    """

    def __init__(self):
        SparseNonValueHandler.__init__(self)
        self.weight = []

    def processElement(self, ele):
        for idx, w in ele:
            self.value.append(idx)
            self.weight.append(w)

    def done(self, data_stream, int_packer):
        SparseNonValueHandler.done(self, data_stream, int_packer)
        data_stream.write(int_packer.pack(self.offset_count))
        data_stream.write(array.array("f", self.weight).tostring())


class StringHandler(object):
    """
    Private Class, Use for converting python object to paddle string.
    """

    def __init__(self, data_stream, int_packer):
        self.data_stream = data_stream
        self.int_packer = int_packer

    def __call__(self, ele):
        """
        It will be invoked when scan each string data.
        :param ele: string data
        :type ele: str
        """
        self.data_stream.write(self.int_packer.pack(len(ele)))
        self.data_stream.write(array.array("c", ele).tostring())


class GeneralPyDataProvider:
    def __init__(self, *file_list, **kwargs):
        """
        :param file_list: input file_list
        """
        del kwargs  # unused
        gc.disable()
        assert isinstance(self.logger, logging.Logger)
        self.use_seq_flag = hasattr(self, "use_seq_flag") and self.use_seq_flag
        self.slots_num = len(self.getSlots())
        self.file_list = list(file_list)
        self.generators = map(self.generateData, self.file_list)
        self.int_packer = struct.Struct("i")
        self.head_packer = struct.Struct("ii")
        self.float_packer = struct.Struct("f")
        self.shuffler = lambda *args, **kwargs: None
        self.data_pool = []
        self.has_subseq = []
        self.has_checked = False

        self.debug = hasattr(self, "debug") and self.debug

        if hasattr(self, "profile_filename") and isinstance(
                self.profile_filename, str):
            self.profile_count = 0
            self.is_profile = True
        else:
            self.is_profile = False

        if not hasattr(self, "file_count") or not isinstance(self.file_count,
                                                             int):
            self.file_count = sys.maxint

        if not hasattr(self, "can_over_batch_size"):
            self.can_over_batch_size = True
        elif not self.can_over_batch_size:
            self.logger.warn(
                "User should ensure every data size is not larger than batch"
                " size when can_over_batch_size = False")

        self.data_pool_idx = 0

    def reset(self):
        """Reset all data in provider."""

        self.logger.debug("reset dataprovider.")
        self.generators = map(self.generateData, self.file_list)
        self.shuffler = lambda *args, **kwargs: None
        self.data_pool = []
        self.data_pool_idx = 0
        if self.file_count != 0:
            self.max_pool_size = 0

        # When use Profile, each pass will print a profile result.
        if self.is_profile:
            if hasattr(self, "profiler") and isinstance(self.profiler,
                                                        profile.Profile):
                self.profiler.disable()
                fn = "%s_%d" % (self.profile_filename, self.profile_count)
                sortby = "cumulative"
                with open(fn, "w") as f:
                    pstats.Stats(self.profiler, stream=f).sort_stats(
                        sortby).print_stats()
                self.logger.info("saving profile to file %s" % fn)
                self.profile_count += 1
            self.logger.info("resetting profile")
            self.profiler = profile.Profile()
            self.profiler.enable()

    def shuffle(self):
        """ shuffle data"""
        if not self.should_shuffle:
            return
        else:
            self.logger.debug("shuffling data.")
            random.shuffle(self.generators)
            self.shuffler = random.shuffle

    def getSlots(self):
        """
        :return : return a list of SlotType
        :rtype: list
        """
        return []

    def generateData(self, fn):
        """
        :param fn: file name
        :return: a generator to yield data one by one.
        """
        raise NotImplementedError

    def calculateDataBatchSize(self, data):
        """
        :param data: One sample which yield by generateData
        :type data: list
        :return: The batch size that the data contribute.
        :rtype: int
        """
        return 1

    def getHeader(self):
        """return paddle header format"""
        ret = self.head_packer.pack(self.slots_num, self.use_seq_flag)
        for obj in self.getSlots():
            ret += self.head_packer.pack(obj.type, obj.dim)
        return ret

    def getHeaderNative(self):
        return self.use_seq_flag, self.getSlots()

    def getNextBatchNative(self, batch_size):
        ret_list = []
        self.__prepareData(batch_size, ret_list)
        return ret_list

    def getNextBatch(self, batch_size):
        """
        :param batch_size: the batch_size approximately return.
        :return: return paddle pyDataProvider format, just see documents.
        :rtype: str

        NOTE: If can_over_batch_size is True, the return batch_size >= input batch_size.
              Otherwise, the return batch_size < input batch_size, BUT USER MUST ENSURE THAT each data's batch size
              is less than input batch_size.
        """
        ret_list = []
        current_batch_size = self.__prepareData(batch_size, ret_list)
        # create unified format for ret_list with differnt slots_num
        if self.slots_num == 1:
            ret_list = [ret_list]

        if current_batch_size == 0:
            return self.int_packer.pack(current_batch_size)
        data_bytes = io.BytesIO()
        seq_bytes = io.BytesIO()
        subseq_bytes = io.BytesIO()
        data_stream = io.BufferedWriter(data_bytes)
        seq_stream = io.BufferedWriter(seq_bytes)
        subseq_stream = io.BufferedWriter(subseq_bytes)

        def convertDataImpl(idx, data_callback):
            """
            This method will handle sequence in return data. invoke data_callback one by one.
            :param idx: the slot index.
            :param data_callback: a callback, which type is (each sample) => None.
            """
            indices = 0
            slot_sample_num = len(ret_list)
            if self.use_seq_flag:
                slot_sample_num = 0
                if self.has_subseq[idx]:  # has sub-sequence
                    slot_subseq_num = 0
                    for dat in ret_list:
                        dat = dat[idx]
                        slot_subseq_num += len(dat)
                        for sub_dat in dat:
                            slot_sample_num += len(sub_dat)
                    subseq_stream.write(self.int_packer.pack(slot_subseq_num))
                else:
                    for dat in ret_list:
                        dat = dat[idx]
                        slot_sample_num += len(dat)
                seq_stream.write(self.int_packer.pack(len(ret_list)))
            data_stream.write(self.int_packer.pack(slot_sample_num))

            for dat in ret_list:
                dat = dat[idx]
                if self.use_seq_flag:
                    seq_stream.write(self.int_packer.pack(indices))
                    if self.has_subseq[idx]:  # has sub-sequence
                        for sub_dat in dat:
                            writeDataStream(sub_dat, data_callback)
                            subseq_stream.write(self.int_packer.pack(indices))
                            indices += len(sub_dat)
                    else:
                        writeDataStream(dat, data_callback)
                        indices += len(dat)
                else:
                    writeDataStream(dat, data_callback)

        def writeDataStream(dat, data_callback):
            if self.use_seq_flag > 0:
                if data_callback is None:  # Special for index slot
                    data_stream.write(array.array("i", dat).tostring())
                else:
                    for ele in dat:
                        data_callback(ele)
            else:
                if data_callback is None:  # Special for index slot
                    data_stream.write(self.int_packer.pack(dat))
                else:
                    data_callback(dat)

        try:
            for i in range(self.slots_num):
                slot = self.getSlots()[i]
                # According to the data_type, each slot data will be converted to binary
                if isinstance(slot, DenseSlot):
                    convertDataImpl(i, lambda e: data_stream.write(
                        array.array("f", e).tostring()))
                elif isinstance(slot, SparseNonValueSlot):
                    handler = SparseNonValueHandler()
                    convertDataImpl(i, handler)
                    handler.done(data_stream, self.int_packer)
                elif isinstance(slot, SparseValueSlot):
                    handler = SparseValueHandler()
                    convertDataImpl(i, handler)
                    handler.done(data_stream, self.int_packer)
                elif isinstance(slot, IndexSlot):
                    convertDataImpl(i, None)
                elif isinstance(slot, StringSlot):
                    handler = StringHandler(data_stream, self.int_packer)
                    convertDataImpl(i, handler)
                else:
                    raise RuntimeError("The data_type must be 0/1/2/3/6")
            data_stream.flush()
            seq_stream.flush()
            subseq_stream.flush()

            return "".join([self.int_packer.pack(current_batch_size),
                            data_bytes.getvalue(),
                            seq_bytes.getvalue(), subseq_bytes.getvalue()])

        finally:
            data_stream.close()
            seq_stream.close()
            subseq_stream.close()
            data_bytes.close()
            seq_bytes.close()
            subseq_bytes.close()

    def hasSubseq(self, ret_list):
        # create unified format for ret_list with differnt slots_num
        if self.slots_num == 1:
            ret_list = [ret_list]
        # decide whether slot has sub-sequence using its first sample
        for i in range(self.slots_num):
            slot = self.getSlots()[i]
            dat = ret_list[0][i][0]
            if isinstance(slot, IndexSlot) or isinstance(slot, StringSlot):
                if isinstance(dat, list) or isinstance(dat, numpy.ndarray):
                    self.has_subseq.append(1)  # has_subseq = True
                    continue
            elif isinstance(dat[0], list) or isinstance(dat[0], numpy.ndarray):
                self.has_subseq.append(1)  # has_subseq = True
                continue
            self.has_subseq.append(0)  # has_subseq = False

    def checkOrder(self):
        first_noSubseq_slot = self.slots_num
        last_subseq_slot = -1
        for i in range(self.slots_num):
            if not self.has_subseq[i]:
                first_noSubseq_slot = i
                break
        for i in range(self.slots_num):
            if self.has_subseq[i]:
                last_subseq_slot = i
        if first_noSubseq_slot < last_subseq_slot:
            raise RuntimeError(
                "slot hasSubseq must put before than slot without subseq")
        self.has_checked = True

    def __prepareData(self, batch_size, ret_list):
        current_batch_size = 0
        could_exit = False
        while not could_exit:
            if len(self.data_pool) == 0:
                self.data_pool_idx = 0
                self.fillPool()
            if len(self.data_pool) != 0:
                for idx in xrange(self.data_pool_idx, len(self.data_pool)):
                    current_batch_size += self.calculateDataBatchSize(
                        self.data_pool[idx])
                    if current_batch_size >= batch_size:
                        could_exit = True
                        break
                if current_batch_size > batch_size and not self.can_over_batch_size:  # if cannot over batch size
                    current_batch_size -= self.calculateDataBatchSize(
                        self.data_pool[idx])
                    idx -= 1

                ret_list += self.data_pool[self.data_pool_idx: idx + 1]

                # for speed reason, just shift left index, not delete data actually.
                self.data_pool_idx = idx + 1

                if self.data_pool_idx == len(self.data_pool):
                    self.data_pool = []
            else:
                break
        if self.use_seq_flag and not self.has_checked:  # compute self.has_subseq and checkOrder only at first time
            self.hasSubseq(ret_list)
            self.checkOrder()
        return current_batch_size

    def fillPool(self):
        """
        Fill the pool to max_pool_size. If max_pool_size is None, then read file_count to pool.
        """
        if self.max_pool_size == 0:
            for i in xrange(min(self.file_count, len(self.generators))):
                self.data_pool += list(self.generators[i])
            self.generators = self.generators[
                              min(self.file_count, len(self.generators)):]
            self.max_pool_size = len(self.data_pool)
        else:
            while len(self.data_pool) < self.max_pool_size and len(
                    self.generators) != 0:
                try:
                    self.data_pool.append(self.generators[0].next())
                except StopIteration:
                    self.generators.pop(0)
        self.shuffler(self.data_pool)


class PoolSize(object):
    """Max number of sample which contains in provider."""

    def __init__(self, pool_size):
        self.size = pool_size


def default_init_hook(cls, *args, **kwargs):
    """ default hook, do nothing """
    del cls, args, kwargs


def provider(slots=None, use_seq=False, should_shuffle=True, pool_size=1,
             can_over_batch_size=True, calc_batch_size=lambda data: 1,
             debug=False, init_hook=default_init_hook, profile_filename=None):
    """
    The decorator for PyDataProvider. User should use this to create Provider class.
    User should only concern how to read sample from file.

    So the basic usage is:

    ..  code-block:: python

        @provider(some data provider config here...)
        def process(obj, file_name):
            while not at end of file_name:
                sample = readOneSampleFromFile(file_name)
                yield sample.

    The configuration of data provider should be setup by:

    :param init_hook: A callback will be invoked when PyDataProvider instance \
                      created. The parameter is (obj, \*args, \*\*kwargs).

                      - **obj**: actually data provider instance, which \
                                 contains some global objects in obj.xxxxx, \
                                 and is used by process function.

                        1. **obj.slots**: a list of SlotType Object. Can be \
                                          set in init. For example, obj.slots = \
                                          [DenseSlot(9), IndexSlot(2)].
                        2. **obj.logger**: a logger object. User can invoke \
                                          obj.logger.info(), obj.logger.fatal(), etc.

                      - **args** and **kwargs**: the data provider __init__ \
                                                 parameters. For example, load_data_args \
                                                 will be found in \*\*kwargs, \
                                                 and if you want to recieve \
                                                 it from trainer_config, \
                                                 recommand to use init_hook_wrapper
    :type init_hook: callable

    :param pool_size:
                      - **int**: it will read at most pool_size files to memory.
                      - **PoolSize**: it will read at most PoolSize.size samples to memory.
                      - If not set, it will read all the files to memory.
    :type pool_size: int | PoolSize

    :param slots: Specify the SlotTypes, can also be set in init_hook. It has two formats:

                  - A list of SlotType objects. For example, slots = \
                    [DenseSlot(9), IndexSlot(2)].
                  - A method return a list of SlotTypes, and the parameter of \
                    method is (obj, \*file_list, \*\*kwargs).
    :type slots: list | callable

    :param use_seq:  False if use no sequence (Default). True if use sequence:

                     - If sequence has **no sub-sequence**: Each slot will \
                       return a list of data. This list is one sequence. \
                       So the return format likes \
                       [[a0, a1, a2], [b1, b2, b3, b4], [c1]].
                     - If sequence has **sub-sequence**: Each slot will return \
                       a nested-list of data. This list contains several \
                       sub-lists, each sub-list is one sub-sequence. \
                       So the return format likes \
                       [[[a0, a1, a2], [a4, a5]], [[b1, b2, b3, b4], [b5, b6]], [[c1], [c2]]].
    :type use_seq: bool

    :param should_shuffle: True if data should shuffle.
    :type should_shuffle: bool

    :param calc_batch_size: The method calculate each data's batch size.

                            - Default is the batch size of one sample.
                            - User can customize by **lamda** funtion. For example, \
                              :code:`calc_batch_size = lambda data : len(data)` \
                              means calculating the token number of a sequence data.
    :type calc_batch_size: callable

    :param can_over_batch_size: Whether :code:`actual batch size >= input batch size`

                                - **True** (>=): getNextBatch method can return more data (Default).
                                - **False** (<): user must ensure that each data's batch size < input batch size.
    :type can_over_batch_size: bool

    :param debug: True if enable debug logger and some debug check. Default is False.
    :type debug: bool

    :param profile_filename: None if disable profile (Default). Otherwise, \
                             the data provider will dump profile result when \
                             reset. And the dump filename is \
                             **<profile_filename>_<reset_count>**.
    :type profile_filename: None | Str
    """

    def _wrapper(handler):
        class Cls(GeneralPyDataProvider):
            """ Real PyDataProvider Class. """

            def __init__(self, *file_list, **kwargs):
                logging.basicConfig(
                    format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
                           " %(message)s")

                self.logger = logging.getLogger("")
                if debug:
                    self.logger.setLevel(logging.DEBUG)
                    self.logger.debug("Running pydataprovider in debug mode.")
                else:
                    self.logger.setLevel(logging.INFO)

                init_hook(self, *file_list, **kwargs)
                if callable(slots):
                    self.slots = slots(self, *file_list, **kwargs)
                elif slots is not None:
                    self.slots = slots

                if isinstance(pool_size, int):
                    self.max_pool_size = 0
                    self.file_count = pool_size
                elif isinstance(pool_size, PoolSize):
                    self.max_pool_size = pool_size.size
                    self.file_count = 0
                else:
                    raise RuntimeError
                self.can_over_batch_size = can_over_batch_size
                self.debug = debug
                self.profile_filename = profile_filename
                self.use_seq_flag = use_seq
                self.should_shuffle = should_shuffle
                GeneralPyDataProvider.__init__(self, *file_list, **kwargs)

            def getSlots(self):
                return self.slots

            def generateData(self, f):
                return handler(self, f)

            def calculateDataBatchSize(self, data):
                return calc_batch_size(data)

        return Cls

    return _wrapper


def init_hook_wrapper(func):
    """
    Wrap a method for PyDataProviderWrapper's init_hook. This method can
    receive parameter from trainer_config's load_data_args. The load_data_args
    must pass a pickle.dumps() value, and dump a map as keyword args. The
    wrapped method :code:`func` will receive them as keyword args.

    So an example usage is:

    ..  code-block:: python

        @init_hook_wrapper
        def hook(obj, dictionary, file_list, **kwargs):
            obj.dictionary = dictionary
            obj.slots = [IndexSlot(len(obj.dictionary)),
                         IndexSlot(len(open(file_list[0], "r").readlines()))]

    :param func: init_hook function
    :type func: callable
    :return: wrapped method, can be passed into @provider.
    """

    @functools.wraps(func)
    def wrapper(obj, *file_list, **kwargs):
        args = kwargs.get("load_data_args", dict())
        if isinstance(args, basestring):
            args = pickle.loads(args)
        args['file_list'] = file_list
        func(obj=obj, **args)

    return wrapper