testPyDataWrapper.py 4.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
sys.path.append("../")

from paddle.trainer.PyDataProviderWrapper import *
import random
import json
import string


@provider(slots=[SparseNonValueSlot(10), DenseSlot(2), SparseValueSlot(10), StringSlot(1), IndexSlot(3)])
def processNonSequenceData(obj, filename):
    with open(filename, "rb") as f:
        for line in f:
            slots_str = line.split(';')
            index = int(slots_str[0])
            non_values = map(int, slots_str[1].split()[1:])
            dense = map(float, slots_str[2].split()[1:])
            strs = slots_str[4].strip().split(' ', 1)[1]

            def __values_mapper__(s):
                s = s.split(":")
                return int(s[0]), float(s[1])

            values = map(__values_mapper__, slots_str[3].split()[1:])
            yield [non_values, dense, values, strs, index]


SPARSE_ID_LIMIT = 1000
SPARSE_ID_COUNT = 100
SEQUENCE_LIMIT = 50
STRING_LIMIT = 10

sparse_id_randomer = lambda: random.randrange(0, SPARSE_ID_LIMIT - 1)
sparse_count_randomer = lambda: random.randrange(1, SPARSE_ID_COUNT)
val_randomer = lambda: random.uniform(-1.0, 1.0)
seq_count_randomer = lambda: random.randrange(1, SEQUENCE_LIMIT)
str_count_randomer = lambda: random.randrange(1, STRING_LIMIT)

class IDRandomer():  # A random generator, return unique id
    def __init__(self):
        self.id_set = set()

    def __call__(self):
        idx = sparse_id_randomer()
        if idx not in self.id_set:
            self.id_set.add(idx)
            return idx
        else:
            return self.__call__()
# SparseValueSlot
def sparse_value_creator(_):
    rand = IDRandomer()
    return [(rand(), val_randomer()) for _ in xrange(sparse_count_randomer())]
sparse_value = map(sparse_value_creator, range(seq_count_randomer()))

# DenseSlot
def dense_creator(_):
    return [val_randomer() for _ in xrange(SPARSE_ID_LIMIT)]
dense = map(dense_creator, range(seq_count_randomer()))

# SparseNonValueSlot
def sparse_creator(_):
    rand = IDRandomer()
    return [rand() for _ in xrange(sparse_count_randomer())]
sparse_nonvalue = map(sparse_creator, range(seq_count_randomer()))

# IndexSlot
ids = [sparse_id_randomer() for _ in range(seq_count_randomer())]

# StringSlot
def random_str(size = 8, chars=string.ascii_letters + string.digits):
    return ''.join(random.choice(chars) for _ in range(size))
strs = [random_str(str_count_randomer()) for _ in range(seq_count_randomer())]

def processSeqAndGenerateDataInit(obj, *args, **kwargs):
    obj.json_filename = kwargs.get("load_data_args", "test_data.json")

@provider(slots=[SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT),
                 SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT),
                 StringSlot(SPARSE_ID_LIMIT)],
          use_seq=True, init_hook=processSeqAndGenerateDataInit)
def processSeqAndGenerateData(obj, name):
    retv = [sparse_value, dense, sparse_nonvalue, ids, strs]
    # Write to protoseq.
    with open(obj.json_filename, "w") as f:
        json.dump(retv, f)
    yield retv


def processSubSeqAndGenerateDataInit(obj, *args, **kwargs):
    obj.json_filename = kwargs.get("load_data_args", "test_data.json")

@provider(slots=[SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT),
                 SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT),
                 StringSlot(SPARSE_ID_LIMIT)],
          use_seq=True, init_hook=processSubSeqAndGenerateDataInit)
def processSubSeqAndGenerateData(obj, name):
    retv_json = [sparse_value, dense, sparse_nonvalue, ids, strs]
    retv_wrapper = [[sparse_value], [dense], [sparse_nonvalue], [ids], [strs]]
    # Write to protoseq.
    with open(obj.json_filename, "w") as f:
        json.dump(retv_json, f)
    yield retv_wrapper

if __name__ == "__main__":
    pvd = processNonSequenceData("test.txt")
    print pvd.getNextBatch(100)
    pvd = processSeqAndGenerateData("_")
    print pvd.getNextBatch(100)
    pvd = processSubSeqAndGenerateData("_")
    print pvd.getNextBatch(1)