db_lstm.py 4.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
import os
import sys
from paddle.trainer_config_helpers import *

#file paths
word_dict_file = './data/src.dict'
label_dict_file = './data/tgt.dict'
train_list_file = './data/train.list'
test_list_file = './data/test.list'

is_test = get_config_arg('is_test', bool, False)
is_predict = get_config_arg('is_predict', bool, False)

if not is_predict:
    #load dictionaries
    word_dict = dict()
    label_dict = dict()
    with open(word_dict_file, 'r') as f_word, \
         open(label_dict_file, 'r') as f_label:
        for i, line in enumerate(f_word):
            w = line.strip()
            word_dict[w] = i

        for i, line in enumerate(f_label):
            w = line.strip()
            label_dict[w] = i

    if is_test:
        train_list_file = None 

    #define data provider
    define_py_data_sources2(
        train_list=train_list_file,
        test_list=test_list_file,
        module='dataprovider',
        obj='process',
        args={'word_dict': word_dict,
              'label_dict': label_dict})

    word_dict_len = len(word_dict)
    label_dict_len = len(label_dict)

else:
    word_dict_len = get_config_arg('dict_len', int)
    label_dict_len = get_config_arg('label_len', int)

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 128
depth = 8
emb_lr = 1e-2
fc_lr = 1e-2
lstm_lr = 2e-2

settings(
    batch_size=150,
    learning_method=AdamOptimizer(),
    learning_rate=1e-3,
    regularization=L2Regularization(8e-4),
    gradient_clipping_threshold=25)

#6 features
word = data_layer(name='word_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=word_dict_len)
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)

if not is_predict:
    target = data_layer(name='target', size=label_dict_len)

ptt = ParameterAttribute(name='src_emb', learning_rate=emb_lr)
layer_attr = ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = ParameterAttribute(learning_rate=fc_lr)
lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=lstm_lr)
para_attr = [fc_para_attr, lstm_para_attr]

word_embedding = embedding_layer(size=word_dim, input=word, param_attr=ptt)
predicate_embedding = embedding_layer(
    size=word_dim, input=predicate, param_attr=ptt)
ctx_n1_embedding = embedding_layer(size=word_dim, input=ctx_n1, param_attr=ptt)
ctx_0_embedding = embedding_layer(size=word_dim, input=ctx_0, param_attr=ptt)
ctx_p1_embedding = embedding_layer(size=word_dim, input=ctx_p1, param_attr=ptt)
mark_embedding = embedding_layer(size=mark_dim, input=mark)

hidden_0 = mixed_layer(
    size=hidden_dim,
    input=[
        full_matrix_projection(input=word_embedding),
        full_matrix_projection(input=predicate_embedding),
        full_matrix_projection(input=ctx_n1_embedding),
        full_matrix_projection(input=ctx_0_embedding),
        full_matrix_projection(input=ctx_p1_embedding),
        full_matrix_projection(input=mark_embedding),
    ])

lstm_0 = lstmemory(input=hidden_0, layer_attr=layer_attr)

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):

    fc = fc_layer(input=input_tmp, size=hidden_dim, param_attr=para_attr)

    lstm = lstmemory(
        input=fc,
        act=ReluActivation(),
        reverse=(i % 2) == 1,
        layer_attr=layer_attr)
    input_tmp = [fc, lstm]

prob = fc_layer(
    input=input_tmp,
    size=label_dict_len,
    act=SoftmaxActivation(),
    param_attr=para_attr)

if not is_predict:
    cls = classification_cost(input=prob, label=target)
    outputs(cls)
else:
    outputs(prob)