softmax_kernel.cu 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/softmax_kernel.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"

namespace phi {
namespace sparse {

template <typename T, typename IntT = int>
__global__ void SoftmaxGpuKernel(const IntT* x_crows,
                                 const T* x_values,
                                 T* out_values,
32 33
                                 int row_number,
                                 int total_row_number) {
34 35 36
  // out = exp(x-x_max) / sum(exp(x-x_max))
  int row = blockIdx.x * blockDim.y + threadIdx.y;
  int non_zero_idx = threadIdx.x;
37 38 39 40 41 42 43 44 45
  if (row >= total_row_number) return;
  int cur_batch = row / row_number;
  int crow_idx = cur_batch * (row_number + 1) + (row % row_number);
  int cur_batch_offset = 0;
  for (int i = 1; i < cur_batch + 1; ++i) {
    cur_batch_offset += x_crows[i * (row_number + 1) - 1];
  }
  int row_first = cur_batch_offset + static_cast<int>(x_crows[crow_idx]);
  int row_nnz = static_cast<int>(x_crows[crow_idx + 1] - x_crows[crow_idx]);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  if (row_nnz == 0) return;

  int kIteration = (row_nnz + warpSize - 1) / warpSize;

  T max_val = -std::numeric_limits<T>::infinity();
  for (int i = 0; i < kIteration; ++i) {
    int idx = non_zero_idx + i * warpSize;
    if (idx >= row_nnz) break;

    if (max_val < x_values[row_first + idx]) {
      max_val = x_values[row_first + idx];
    }
  }
  T row_max_val = phi::funcs::warpReduceMax<T>(max_val, 0xFFFFFFFF);

  T exp_sum = 0;
  for (int i = 0; i < kIteration; ++i) {
    int idx = non_zero_idx + i * warpSize;
    if (idx >= row_nnz) break;

    auto functor = phi::funcs::CudaExpFunctor<T>();
    T exp = functor(x_values[row_first + idx] - row_max_val);
    exp_sum += exp;
    out_values[row_first + idx] = exp;
  }
  T row_exp_sum = phi::funcs::warpReduceSum<T>(exp_sum, 0xFFFFFFFF);

  for (int i = 0; i < kIteration; ++i) {
    int idx = non_zero_idx + i * warpSize;
    if (idx >= row_nnz) break;

    out_values[row_first + idx] = out_values[row_first + idx] / row_exp_sum;
  }
}

template <typename T, typename Context>
void SoftmaxCsrKernel(const Context& dev_ctx,
                      const SparseCsrTensor& x,
                      int axis,
                      SparseCsrTensor* out) {
  PADDLE_ENFORCE_EQ(axis,
                    -1,
                    phi::errors::Unimplemented(
                        "SparseCsrTensor only support axis=-1 for softmax, "
                        "which is faster when reading data by row (axis=-1)"));
  EmptyLikeCsrKernel<T, Context>(dev_ctx, x, out);
  auto x_dim = x.dims();
93 94 95
  auto x_rank = x_dim.size();

  int total_row_number = 1;
96
  int row_number = 1;
97 98 99 100 101
  for (int i = 0; i < x_rank - 1; ++i) {
    total_row_number *= x_dim[i];
    if (i == x_rank - 2) {
      row_number = x_dim[i];
    }
102 103
  }

104 105
  dim3 grid((total_row_number + 3) / 4);
  dim3 block(32, 4);
106 107 108 109 110 111 112

  PD_VISIT_INTEGRAL_TYPES(x.non_zero_crows().dtype(), "CsrSoftmaxKernel", ([&] {
                            SoftmaxGpuKernel<T, data_t>
                                <<<grid, block, 0, dev_ctx.stream()>>>(
                                    x.non_zero_crows().data<data_t>(),
                                    x.non_zero_elements().data<T>(),
                                    out->mutable_non_zero_elements()->data<T>(),
113 114
                                    row_number,
                                    total_row_number);
115 116 117 118 119 120 121 122 123 124 125 126 127 128
                          }));
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(softmax_csr,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SoftmaxCsrKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}