inplace_op_pass.cc 19.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/inplace_op_pass.h"
#include <algorithm>
#include <deque>
#include <iterator>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
24
#include "paddle/fluid/framework/details/graph_print_pass.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/framework/ir/graph_helper.h"
D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/op_info.h"

// NOTE(dzhwinter): inplace means one op output variable reuse the input space.
// By our design, one operator only can read its input(const Variable),
// write its output(non-const Variable). If one operator is inplaced, means
// user have chance to write the space before reading happens.
// Especially when some optimize code writing style is applied.
//
//
// /* wrong case in operator */
// /*In this case, a larger allocation is allocated, input content is lost*/
// const Tensor* in = ctx.Input<Tensor>("In")
// Tensor* out = ctx.Output<Tensor>("Out");
// auto* out_ptr = out->mutable_data<T>(ctx.GetPlace());
// out_ptr[0] = 0;  // input contect is overwrited.

D
dzhwinter 已提交
43 44 45
// NOTE(dzhwinter):
// Only for backward compacity and stable. if enable_inplace_whitelist is turn
// on.
D
dzhwinter 已提交
46 47 48
// only the ops in whitelist will be use inplace strategy.
// if not, all the op will be inplaced if it registered with InplaceClass
DEFINE_bool(
D
dzhwinter 已提交
49
    enable_inplace_whitelist, false,
D
dzhwinter 已提交
50 51 52 53 54
    "If this option turns on, only these op in whitelist can be inplaced."
    "If it turns off, all of the running op can be candidate of inplaced op."
    "Such as scale, elementwise_add"
    "By default, it's turned on");

D
dzhwinter 已提交
55 56
DECLARE_string(memory_optimize_debug);

D
dzhwinter 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// clang-format off
const std::string kInplacedOpWhiteList[] = { // NOLINT
    "sigmoid",
    "exp",
    "relu",
    "tanh",
    "sqrt",
    "ceil",
    "floor",
    "reciprocal",
    "relu6",
    "soft_relu",
    "hard_sigmoid",
    "batch_norm",
    "batch_norm_grad",
    "sum",
    "sum_grad",
    "scale",
    "reshape",
    "elementwise_add",
    "elementwise_add_grad",
};
// clang-format on

namespace paddle {
namespace framework {
namespace details {

85
static inline ir::Node* GetNextCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
86 87 88 89
  // if next op is inplaced, then return the output var
  // otherwise return nullptr
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
  ir::Node* inplaced_var = nullptr;
90 91 92 93 94
  for (auto* next_op : var->outputs) {
    for (auto* output : next_op->outputs) {
      if (output->IsVar() && !output->IsCtrlVar() &&
          output->Name() == var->Name()) {
        inplaced_var = output;
D
dzhwinter 已提交
95 96 97 98 99 100
      }
    }
  }
  return inplaced_var;
}

101
static inline ir::Node* GetPrevCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
102
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
103 104 105 106 107 108 109 110 111 112 113
  auto* prev_op = var->inputs.at(0);
  auto input_it = std::find_if(prev_op->inputs.begin(), prev_op->inputs.end(),
                               [&](ir::Node* node) {
                                 if (node->IsVar() && !node->IsCtrlVar() &&
                                     node->Name() == var->Name()) {
                                   return true;
                                 } else {
                                   return false;
                                 }
                               });
  return input_it == prev_op->inputs.end() ? nullptr : *input_it;
D
dzhwinter 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

template <typename Container>
static inline bool ConnectByCtrlVar(const Container& group1,
                                    const Container& group2) {
  bool connected = false;
  std::unordered_set<ir::Node*> outputs;
  for (auto* op : group1) {
    for (auto* var : op->outputs) {
      if (var->IsCtrlVar()) outputs.emplace(var);
    }
  }
  for (auto* op : group2) {
    for (auto* var : op->inputs) {
      if (outputs.count(var)) connected = true;
    }
  }
  return connected;
}

InplacePass::InplacePass() : Pass() {
  if (FLAGS_enable_inplace_whitelist) {
    for (auto& s : kInplacedOpWhiteList) {
      whitelist_.emplace(s);
    }
  }
}

void InplacePass::InitSSAGraphNodes() const {
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  for (auto* op : view_.AllOps()) {
    for (auto* node : op->inputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
    for (auto* node : op->outputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
  }
}

std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  var_nodes_.clear();
  view_.Build(graph.get());
  InitSSAGraphNodes();

168
  std::unique_ptr<SSAGraphPrinter> printer(new SSAGraphPrinterImpl);
D
dzhwinter 已提交
169 170 171 172
  constexpr char graph_path1[] = "ir_graph_before_inplaced.txt";
  std::unique_ptr<std::ostream> fout1(new std::ofstream(graph_path1));
  PADDLE_ENFORCE(fout1->good());
  printer->Print(*graph, *fout1);
173

D
dzhwinter 已提交
174 175 176 177 178 179
  for (auto* op : view_.AllOps()) {
    if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
      continue;
    TryInplaceOpInputOutput(op, graph.get());
  }
  graph->ResolveHazard(var_nodes_);
180 181 182 183 184

  constexpr char graph_path[] = "ir_graph_inplaced.txt";
  std::unique_ptr<std::ostream> fout(new std::ofstream(graph_path));
  PADDLE_ENFORCE(fout->good());
  printer->Print(*graph, *fout);
D
dzhwinter 已提交
185 186 187 188 189 190 191
  return graph;
}

void InplacePass::InplaceModifyDesc(const std::string& var,
                                    const std::string& cache_var,
                                    const size_t& idx) const {
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
192
    ir::Node* op = view_.AllOps()[i];
D
dzhwinter 已提交
193 194 195 196 197 198 199 200 201
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
    if (op_desc->Block()->HasVar(var)) op_desc->Block()->RemoveVar(var);
    op_desc->Flush();
  }
}

D
dzhwinter 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
const SSANodeVector InplacePass::TryInplaceModifyVar(
    const std::string& var, const std::string& cache_var, const size_t& idx,
    ir::Graph* graph) const {
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

  SSANodeVector swap_nodes;
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }

        swap_nodes[node].emplace_back(cache_node);
      }
    }
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
        swap_nodes[node].emplace_back(cache_node);
      }
    }
  }
  return swap_nodes;
}

void InplacePass::CommitModify(const SSANodeVector& swap_nodes,
                               ir::Graph* graph) const {
  for (auto& pair : swap_nodes) {
    auto* node = pair.first;
    const std::string var = node->Name();
    for (auto* cache_node : pair.second) {
      const std::string cache_var = cache_node->Name();
      var_nodes_[cache_var].emplace_back(cache_node);
    }
    auto& nodes = var_nodes_.at(var);
    nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
    graph->RemoveNode(node);
  }
}

void InplacePass::WithDrawModify(const SSANodeVector& nodes,
                                 ir::Graph* graph) const {
  for (auto& pair : nodes) {
    auto* node = pair.first;
    const std::string var = node->Name();
    for (auto* cache_node : pair.second) {
      const std::string cache_var = cache_node->Name();
      auto* prev_op = node->inputs[0];
      std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), cache_node,
                   node);
      for (auto* next_op : node->outputs) {
        std::replace(next_op->inputs.begin(), next_op->inputs.end(), cache_node,
                     node);
      }
      graph->RemoveNode(cache_node);
    }
  }
}

D
dzhwinter 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
void InplacePass::InplaceModifyVar(const std::string& var,
                                   const std::string& cache_var,
                                   const size_t& idx, ir::Graph* graph) const {
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
302 303 304
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);

D
dzhwinter 已提交
305 306 307
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
308 309 310 311 312
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
D
dzhwinter 已提交
313 314 315 316
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
317 318 319 320 321 322 323

        // release unused var in graph. Because python side memory optimize
        // may reused the var in same name, so we only clear the var node
        // after current inplaced index.
        graph->RemoveNode(node);
        auto& nodes = var_nodes_.at(var);
        nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
D
dzhwinter 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
      }
    }

    // if we need to rename the output,
    // always create a newer version of cache_var
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
342 343 344 345 346

        // release unsed var in graph
        graph->RemoveNode(node);
        auto& nodes = var_nodes_.at(var);
        nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
D
dzhwinter 已提交
347 348 349 350 351 352 353 354 355
      }
    }
  }
}

void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
                                          ir::Graph* graph) const {
  PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
                 "op_desc is nullptr");
D
dzhwinter 已提交
356
  // 4 pre-requirments need to meet if the op want to inplaced.
D
dzhwinter 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
  // 1. infer_inplace_ is registered.
  auto* op_desc = op->Op();
  auto& infer_inplace =
      OpInfoMap::Instance().Get(op_desc->Type()).infer_inplace_;
  if (!static_cast<bool>(infer_inplace)) return;
  PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
                 "%s's infer_inplace has not been registered", op_desc->Type());

  auto* block = op_desc->Block();
  auto in_to_outs = infer_inplace(*op_desc, block);

  auto& all_ops = view_.AllOps();
  auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
  size_t idx = std::distance(all_ops.begin(), cursor);

  for (auto& pair : in_to_outs) {
    auto& in_var_name = pair.first;
    auto& out_var_name = pair.second;
    auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
    auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
D
dzhwinter 已提交
377

D
dzhwinter 已提交
378 379
    // 2. there is no external pending op on the input node
    if (view_.PendingOpsOnVar(in_node).size() > 1) {
D
dzhwinter 已提交
380 381 382 383
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input has external dependency."
          "inplace such pair will overwrite the memory.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
384 385
      continue;
    }
D
dzhwinter 已提交
386

D
dzhwinter 已提交
387 388 389 390
    // 3. if output reuse input inplaced, the dependency group is not changed.
    // For detail, check
    // the function description in "OutConnectInputByCtrlVar"
    if (view_.OutConnectInputByCtrlVar(in_node, out_node)) {
D
dzhwinter 已提交
391 392 393 394
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input and output connect by ctrl var."
          "inplace such pair will generate a circle.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
395 396
      continue;
    }
D
dzhwinter 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

    // 4. if output has been memory optimize by python(fluid.memory_optmize()).
    // this candidate  can not be inplaced. Will be deprecated in the future.
    if (view_.ReusedInPythonMemOpt(out_node->Name())) {
      VLOG(4) << string::Sprintf(
          "Skiped %s => %s reused previous memory block in python memory "
          "optmize,"
          "it inplace may generate a circle",
          out_var_name, in_var_name, op->Name());
      continue;
    }

    // Debug Interface. Which would be skipped by the pass.
    if (out_node->Name() == FLAGS_memory_optimize_debug) {
      VLOG(3) << "Skiped var by force. FLAGS_memory_optimize_debug="
              << out_node->Name();
      continue;
    }

    auto swap_nodes =
        TryInplaceModifyVar(out_var_name, in_var_name, idx, graph);

    // NOTE(dzhwinter):
    // two stage commit of inplaced op. If add such node generate a circle,
    // then withdraw the changes. Otherwise, safely add the node.
    if (!ir::HasCircle(*graph)) {
      VLOG(3) << string::Sprintf("!!! %s,  %s => %s inplaced", op->Name(),
                                 out_var_name, in_var_name);
      CommitModify(swap_nodes, graph);
      InplaceModifyDesc(out_var_name, in_var_name, idx);
    } else {
      VLOG(3) << string::Sprintf(
          "Skiped pair %s => %s, inplace will generate a circle. withdraw %s",
          out_var_name, in_var_name, op->Name());
      WithDrawModify(swap_nodes, graph);
    }
D
dzhwinter 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  }
}

ir::Node* GraphView::GetNodeByName(const std::string& name,
                                   const std::vector<ir::Node*>& nodes) const {
  // nodes should be op->inputs/outputs
  // node in same node do have different name.
  std::unordered_set<std::string> nodes_in_op;
  bool has_dup_node =
      std::all_of(nodes.begin(), nodes.end(), [&nodes_in_op](ir::Node* node) {
        if (!node->IsVar() || node->IsCtrlVar() || node->Var() == nullptr) {
          if (nodes_in_op.count(node->Name())) return true;
          nodes_in_op.emplace(node->Name());
        }
        return false;
      });
  PADDLE_ENFORCE(has_dup_node == false, "nodes has same name!");
  ir::Node* node = nullptr;
  for (auto* it : nodes) {
    if (!it->IsVar() || it->IsCtrlVar() || it->Var() == nullptr) continue;
    if (it->Name() == name) {
      node = it;
      break;
    }
  }
  PADDLE_ENFORCE(node != nullptr,
                 string::Sprintf("Not found var %s in nodes!", name));
  return node;
}

std::vector<ir::Node*> GraphView::PendingOpsOnVar(ir::Node* node) {
464 465 466 467 468 469 470 471 472 473
  // get the pending ops depends on same var node.
  // because node also maybe a inplaced variable, so need to backtrack all the
  // previous inplaced vars.
  std::vector<ir::Node*> pending_ops;
  ir::Node* p = node;
  while (p != nullptr) {
    pending_ops.insert(pending_ops.end(), p->outputs.begin(), p->outputs.end());
    p = GetPrevCascadeInplacedVar(p);
  }
  return pending_ops;
D
dzhwinter 已提交
474 475
}

D
dzhwinter 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
void GraphView::Build(ir::Graph* g) {
  // track the var nodes in correct order.
  // Because we insert some new created node. Which may have data race between
  // nodes.
  // resolve data harzards depends on the var nodes in right order.
  ops_ = SortOpLikeDescOrder(*g);

  // track the nodes which reused previous node in Python memory optimize.
  // these node can not be inplaced, otherwise may generate a circle in graph.
  std::unordered_set<std::string> all_vars;
  for (auto& node : g->Nodes()) {
    if (node->IsVar()) continue;
    for (auto& out : node->outputs) {
      if (out->IsCtrlVar() || out->Var() == nullptr) continue;
      if (all_vars.count(out->Name())) {
        dup_nodes_.emplace(out->Name());
      } else {
        all_vars.emplace(out->Name());
      }
    }
  }
}
D
dzhwinter 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

const std::vector<ir::Node*> GraphView::AllOps() { return ops_; }

bool GraphView::OutConnectInputByCtrlVar(ir::Node* in_var, ir::Node* out_var) {
  // assume v_a0, v_a1 is variable. v_a0 -> v_a0 means already inplaced.
  // v_a1 -> v_a1 means already inplaced.
  // Currently we make decision to check if the v_a0 -> v_a1 can be inplace.
  //
  // v_a0
  //  +
  //  |
  //  v
  // v_a0
  //  +
  //  |
  //  v
  // v_a1
  //  +
  //  |
  //  v
  // v_a1
  // start from the first inplaced input v_a0(on the top one).
  // Do a DFSSearch, get all its paths. If there is one path connect
  // the in_var and out_var which contains control dep var.
  // Means there a control path. out_var can not be inplaced use in_var.

  std::unordered_set<ir::Node *> out_var_set, in_var_set;
  ir::Node* out = out_var;
  // get the ops with same output name
  while (out != nullptr) {
    out_var_set.emplace(out);
529
    out = GetNextCascadeInplacedVar(out);
D
dzhwinter 已提交
530 531 532 533 534 535
  }

  // get ops with same input name
  ir::Node* in = in_var;
  while (in != nullptr) {
    in_var_set.emplace(in);
536
    in = GetPrevCascadeInplacedVar(in);
D
dzhwinter 已提交
537 538 539 540 541 542
  }
  // find if there is path with control dep var connect the in_var_set and
  // out_var_set
  return ConnectByCtrlVar(in_var_set, out_var_set);
}

D
dzhwinter 已提交
543 544 545 546
bool GraphView::ReusedInPythonMemOpt(const std::string& var) const {
  return dup_nodes_.count(var);
}

D
dzhwinter 已提交
547 548 549 550 551
}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inplace_pass, paddle::framework::details::InplacePass);