unpool_op.cc 5.5 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23 24 25 26 27
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
28
    AddInput("Indices",
S
sweetsky0901 已提交
29 30 31 32 33 34 35 36 37 38
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
        "(Tensor) The output tensor of unpool operator."
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");
    AddAttr<std::vector<int>>("ksize",
S
sweetsky0901 已提交
39
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
40
        "of unpooling operator.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>("strides",
        "(vector, default:{1, 1}), "
S
sweetsky0901 已提交
43
        "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
44
        .SetDefault({1, 1});
S
sweetsky0901 已提交
45 46
    AddAttr<std::vector<int>>("paddings",
        "(vector defalut:{0,0}), "
S
sweetsky0901 已提交
47
        "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({0, 0});
S
sweetsky0901 已提交
49
    AddAttr<std::string>("unpooling_type",
S
sweetsky0901 已提交
50 51
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
52
    AddComment(R"DOC(
53 54 55 56
          "Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
          /07/iccv2011.pdf
          PyTorch: http://pytorch.org/docs/master/nn.html?highlight=unpool#
          torch.nn.MaxUnpool2d"
S
sweetsky0901 已提交
57 58 59 60 61 62 63 64 65 66
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
  int output_size = (input_size -1) * stride - 2 * padding + ksize;
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
67 68 69 70 71 72 73 74 75
protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
      ctx.device_context());
  }

public:
S
sweetsky0901 已提交
76 77 78 79
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
                   "should not be null.");
80
    PADDLE_ENFORCE(ctx->HasInput("Indices"), "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
81 82 83 84
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UnpoolOp should not be null.");
    auto in_x_dims = ctx->GetInputDim("X");
85
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
86
    std::string unpooling_type =
S
sweetsky0901 已提交
87
      ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
88 89 90
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
91
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
92
                    "Unpooling intput must be of 4-dimensional.");
93
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
S
sweetsky0901 已提交
94 95 96 97 98 99 100 101 102 103
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
        OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
104 105 106 107 108 109 110 111
 protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
      ctx.device_context());
  }

S
sweetsky0901 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                                  "Input(X@GRAD) should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
S
sweetsky0901 已提交
125
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
126
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
127
REGISTER_OP_CPU_KERNEL(unpool,
S
sweetsky0901 已提交
128 129
              ops::UnpoolKernel<paddle::platform::CPUPlace, float, int>,
              ops::UnpoolKernel<paddle::platform::CPUPlace, double, int>);
S
sweetsky0901 已提交
130
REGISTER_OP_CPU_KERNEL(unpool_grad,
S
sweetsky0901 已提交
131 132
            ops::UnpoolGradKernel<paddle::platform::CPUPlace, float, int>,
            ops::UnpoolGradKernel<paddle::platform::CPUPlace, double, int>);
S
sweetsky0901 已提交
133