test_calibration.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import functools
import contextlib
24
from paddle.dataset.common import download
25 26
from PIL import Image, ImageEnhance
import math
27
import paddle.fluid.contrib.int8_inference.utility as int8_utility
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 1
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


43
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(sample, mode, color_jitter, rotate):
    img_path = sample[0]

    img = Image.open(img_path)

    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std

    return img, sample[1]


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(full_lines)

            lines = full_lines

            for line in lines:
                img_path, label = line.split()
                img_path = os.path.join(data_dir, img_path)
                if not os.path.exists(img_path):
                    continue
                yield img_path, int(label)

    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


117
class TestCalibrationForResnet50(unittest.TestCase):
118
    def setUp(self):
119 120 121 122
        self.int8_download = 'int8/download'
        self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                               self.int8_download)

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        data_urls = []
        data_md5s = []
        self.data_cache_folder = ''
        if os.environ.get('DATASET') == 'full':
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
            )
            data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
            data_urls.append(
                'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
            )
            data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "full_data", False)
        else:
            data_urls.append(
139
                'http://paddle-inference-dist.bj.bcebos.com/int8/calibration_test_data.tar.gz'
140 141 142 143
            )
            data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
            self.data_cache_folder = self.download_data(data_urls, data_md5s,
                                                        "small_data", False)
144 145 146 147

        # reader/decorator.py requires the relative path to the data folder
        cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
                                                   self.data_cache_folder)
148 149
        os.system(cmd)

150 151 152 153
        self.batch_size = 1
        self.sample_iterations = 50
        self.infer_iterations = 50000 if os.environ.get(
            'DATASET') == 'full' else 50
154

155 156 157 158 159 160
    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

161
    def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
162
        data_cache_folder = os.path.join(self.cache_folder, folder_name)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        zip_path = ''
        if os.environ.get('DATASET') == 'full':
            file_names = []
            for i in range(0, len(data_urls)):
                download(data_urls[i], self.int8_download, data_md5s[i])
                file_names.append(data_urls[i].split('/')[-1])

            zip_path = os.path.join(self.cache_folder,
                                    'full_imagenet_val.tar.gz')
            if not os.path.exists(zip_path):
                cat_command = 'cat'
                for file_name in file_names:
                    cat_command += ' ' + os.path.join(self.cache_folder,
                                                      file_name)
                cat_command += ' > ' + zip_path
                os.system(cat_command)

        if os.environ.get('DATASET') != 'full' or is_model:
            download(data_urls[0], self.int8_download, data_md5s[0])
            file_name = data_urls[0].split('/')[-1]
            zip_path = os.path.join(self.cache_folder, file_name)

        print('Data is downloaded at {0}').format(zip_path)
186 187 188
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

189
    def download_model(self):
190
        # resnet50 fp32 data
191
        data_urls = [
192
            'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
193 194 195
        ]
        data_md5s = ['4a5194524823d9b76da6e738e1367881']
        self.model_cache_folder = self.download_data(data_urls, data_md5s,
196
                                                     "resnet50_fp32")
197 198
        self.model = "ResNet-50"
        self.algo = "direct"
199

200 201 202 203 204 205 206 207 208 209 210 211 212
    def run_program(self, model_path, generate_int8=False, algo='direct'):
        image_shape = [3, 224, 224]

        fluid.memory_optimize(fluid.default_main_program())

        exe = fluid.Executor(fluid.CPUPlace())

        [infer_program, feed_dict,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)

        t = fluid.transpiler.InferenceTranspiler()
        t.transpile(infer_program, fluid.CPUPlace())

213 214
        val_reader = paddle.batch(val(), self.batch_size)
        iterations = self.infer_iterations
215 216 217

        if generate_int8:
            int8_model = os.path.join(os.getcwd(), "calibration_out")
218
            iterations = self.sample_iterations
219 220 221 222 223

            if os.path.exists(int8_model):
                os.system("rm -rf " + int8_model)
                os.system("mkdir " + int8_model)

224
            calibrator = int8_utility.Calibrator(
225 226
                program=infer_program,
                pretrained_model=model_path,
227 228 229 230 231
                algo=algo,
                exe=exe,
                output=int8_model,
                feed_var_names=feed_dict,
                fetch_list=fetch_targets)
232 233 234

        test_info = []
        cnt = 0
235
        periods = []
236 237 238 239 240 241 242 243
        for batch_id, data in enumerate(val_reader()):
            image = np.array(
                [x[0].reshape(image_shape) for x in data]).astype("float32")
            label = np.array([x[1] for x in data]).astype("int64")
            label = label.reshape([-1, 1])
            running_program = calibrator.sampling_program.clone(
            ) if generate_int8 else infer_program.clone()

244
            t1 = time.time()
245 246 247 248 249
            _, acc1, _ = exe.run(
                running_program,
                feed={feed_dict[0]: image,
                      feed_dict[1]: label},
                fetch_list=fetch_targets)
250 251 252 253
            t2 = time.time()
            period = t2 - t1
            periods.append(period)

254
            if generate_int8:
255
                calibrator.sample_data()
256 257 258 259

            test_info.append(np.mean(acc1) * len(data))
            cnt += len(data)

260 261 262
            if (batch_id + 1) % 100 == 0:
                print("{0} images,".format(batch_id + 1))
                sys.stdout.flush()
263

264 265
            if (batch_id + 1) == iterations:
                break
266 267

        if generate_int8:
268 269
            calibrator.save_int8_model()

270
            print(
271
                "Calibration is done and the corresponding files are generated at {}".
272 273
                format(os.path.abspath("calibration_out")))
        else:
274 275 276 277
            throughput = cnt / np.sum(periods)
            latency = np.average(periods)
            acc1 = np.sum(test_info) / cnt
            return (throughput, latency, acc1)
278

279
    def test_calibration(self):
280 281 282 283 284 285 286 287 288 289 290 291 292
        self.download_model()
        print("Start FP32 inference for {0} on {1} images ...").format(
            self.model, self.infer_iterations)
        (fp32_throughput, fp32_latency,
         fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
        print("Start INT8 calibration for {0} on {1} images ...").format(
            self.model, self.sample_iterations)
        self.run_program(
            self.model_cache_folder + "/model", True, algo=self.algo)
        print("Start INT8 inference for {0} on {1} images ...").format(
            self.model, self.infer_iterations)
        (int8_throughput, int8_latency,
         int8_acc1) = self.run_program("calibration_out")
293
        delta_value = fp32_acc1 - int8_acc1
294
        self.assertLess(delta_value, 0.01)
295 296 297 298 299 300 301 302 303
        print(
            "FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, fp32_throughput, fp32_latency,
                   fp32_acc1))
        print(
            "INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
            format(self.model, self.batch_size, int8_throughput, int8_latency,
                   int8_acc1))
        sys.stdout.flush()
304 305 306


class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
307
    def download_model(self):
308
        # mobilenetv1 fp32 data
309
        data_urls = [
310
            'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
311 312 313
        ]
        data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
        self.model_cache_folder = self.download_data(data_urls, data_md5s,
314
                                                     "mobilenetv1_fp32")
315 316
        self.model = "MobileNet-V1"
        self.algo = "KL"
317 318 319 320


if __name__ == '__main__':
    unittest.main()