reshape_op.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
Y
Yu Yang 已提交
63
    // only one dimension can be set to -1, whose size will be automatically
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                        "Invalid shape is given.");
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

Q
QI JUN 已提交
113
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
114
class ReshapeKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
115
 public:
G
guosheng 已提交
116 117 118
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
119
    auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
Y
ying 已提交
120

121
    framework::DDim out_dims = out->dims();
Y
Yu Yang 已提交
122

123 124
    if (shape_tensor) {
      auto *shape_data = shape_tensor->data<int>();
Y
Yu Yang 已提交
125
      framework::Tensor cpu_shape_tensor;
126 127 128 129
      if (platform::is_gpu_place(ctx.GetPlace())) {
        TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(),
                   &cpu_shape_tensor);
        shape_data = cpu_shape_tensor.data<int>();
Y
Yu Yang 已提交
130
        ctx.device_context().Wait();
131 132 133 134 135
      }
      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
    }
C
caoying03 已提交
136 137 138 139 140 141 142 143 144
    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
    }

Y
Yan Chunwei 已提交
145
    bool inplace = ctx.Attr<bool>("inplace");
146
    out->Resize(out_dims);
Y
Yan Chunwei 已提交
147 148 149
    if (!inplace) {
      out->mutable_data<T>(ctx.GetPlace());
      framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
F
fengjiayi 已提交
150
      ctx.device_context().Wait();
151
      // TensorCopy will resize to in_dims.
Y
Yan Chunwei 已提交
152 153 154 155 156
      out->Resize(out_dims);
    } else {
      out->ShareDataWith(*in);
      out->Resize(out_dims);
    }
Y
Yibing Liu 已提交
157 158 159
  }
};

Q
QI JUN 已提交
160
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
161
class ReshapeGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
162
 public:
G
guosheng 已提交
163 164 165
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
C
caoying03 已提交
166

Y
Yibing Liu 已提交
167
    d_x->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
168
    bool inplace = ctx.Attr<bool>("inplace");
Y
Yibing Liu 已提交
169 170

    auto in_dims = d_x->dims();
Y
Yan Chunwei 已提交
171 172
    if (!inplace) {
      framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
F
fengjiayi 已提交
173
      ctx.device_context().Wait();
Y
Yan Chunwei 已提交
174 175 176 177 178
      d_x->Resize(in_dims);
    } else {
      d_x->ShareDataWith(*d_out);
      d_x->Resize(in_dims);
    }
Y
Yibing Liu 已提交
179 180
  }
};
H
Helin Wang 已提交
181 182
}  // namespace operators
}  // namespace paddle