cudnn_desc.h 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
Q
qingqing01 已提交
32
inline cudnnDataType_t ToCudnnDataType(const T& t) {
33 34 35 36
  auto type = framework::ToDataType(t);
  return ToCudnnDataType(type);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

60
template <>
Q
qingqing01 已提交
61 62
inline cudnnDataType_t ToCudnnDataType(
    const framework::proto::VarType::Type& t) {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  cudnnDataType_t type = CUDNN_DATA_FLOAT;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = CUDNN_DATA_HALF;
      break;
    case framework::proto::VarType::FP32:
      type = CUDNN_DATA_FLOAT;
      break;
    case framework::proto::VarType::FP64:
      type = CUDNN_DATA_DOUBLE;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  using T = cudnnActivationStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
Q
qingqing01 已提交
86
        CUDNN_ENFORCE(dynload::cudnnDestroyActivationDescriptor(t));
87 88 89 90 91 92
        t = nullptr;
      }
    }
  };
  ActivationDescriptor() {
    T* raw_ptr;
Q
qingqing01 已提交
93
    CUDNN_ENFORCE(dynload::cudnnCreateActivationDescriptor(&raw_ptr));
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    desc_.reset(raw_ptr);
  }
  template <typename T>
  void set(cudnnActivationMode_t mode, const T& coef) {
    CUDNN_ENFORCE(dynload::cudnnSetActivationDescriptor(
        desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
  }

  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class TensorDescriptor {
 public:
  using T = cudnnTensorStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
Q
qingqing01 已提交
115
        CUDNN_ENFORCE(dynload::cudnnDestroyTensorDescriptor(t));
116 117 118 119 120 121
        t = nullptr;
      }
    }
  };
  TensorDescriptor() {
    T* raw_ptr;
Q
qingqing01 已提交
122
    CUDNN_ENFORCE(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
123 124 125 126 127
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
  void set(const Tensor& tensor, const int groups = 1) {
128
    auto dims = framework::vectorize<int>(tensor.dims());
129 130 131 132 133 134 135 136 137
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
Q
qingqing01 已提交
138
    CUDNN_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
139 140 141 142
        desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
        dims_with_group.data(), strides.data()));
  }

143 144 145 146 147 148 149 150 151 152 153 154 155
  void set(const Tensor& tensor, const cudnnTensorFormat_t format) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
    CUDNN_ENFORCE(dynload::cudnnSetTensorNdDescriptorEx(
        desc_.get(), format, ToCudnnDataType(tensor.type()),
        transformed_dims.size(), transformed_dims.data()));
  }

156 157 158 159
 private:
  std::unique_ptr<T, Deleter> desc_;
};

Q
qingqing01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class FilterDescriptor {
 public:
  using T = cudnnFilterStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        CUDNN_ENFORCE(dynload::cudnnDestroyFilterDescriptor(t));
        t = nullptr;
      }
    }
  };
  FilterDescriptor() {
    T* raw_ptr;
    CUDNN_ENFORCE(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(const Tensor& tensor, const cudnnTensorFormat_t format,
           const int groups = 1) {
181
    auto dims = framework::vectorize<int>(tensor.dims());
182 183 184 185 186 187
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
Q
qingqing01 已提交
188
    if (groups > 1) {
189
      transformed_dims[1] = transformed_dims[1] / groups;
Q
qingqing01 已提交
190 191
    }
    CUDNN_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
192 193
        desc_.get(), ToCudnnDataType(tensor.type()), format,
        transformed_dims.size(), transformed_dims.data()));
Q
qingqing01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class ConvolutionDescriptor {
 public:
  using T = cudnnConvolutionStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
        CUDNN_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(t));
        t = nullptr;
      }
    }
  };
  ConvolutionDescriptor() {
    T* raw_ptr;
    CUDNN_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(cudnnDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           const int groups = 1) {
    cudnnDataType_t compute_type =
        (dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
    T* desc = desc_.get();
    CUDNN_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
        desc, pads.size(), pads.data(), strides.data(), dilations.data(),
        CUDNN_CROSS_CORRELATION, compute_type));
#if CUDNN_VERSION_MIN(7, 0, 1)
    CUDNN_ENFORCE(
        platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
231 232 233
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
        desc, CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
234 235 236 237
    if (dtype == CUDNN_DATA_HALF) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          desc, CUDNN_TENSOR_OP_MATH));
    }
238
#endif
Q
qingqing01 已提交
239 240 241 242 243 244 245
#endif
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

246 247
}  // namespace platform
}  // namespace paddle