sequence2batch.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
22

D
dangqingqing 已提交
23 24 25 26
namespace paddle {
namespace operators {
namespace math {

27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
32 33 34 35 36 37 38
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
Q
QI JUN 已提交
39
  void operator()(const DeviceContext& context, const framework::Tensor& src,
40
                  framework::Vector<size_t> index_lod, framework::Tensor* dst,
Q
QI JUN 已提交
41
                  bool is_src_index);
D
dangqingqing 已提交
42 43
};

Q
QI JUN 已提交
44
template <typename DeviceContext, typename T>
D
dangqingqing 已提交
45
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
46 47 48 49 50 51 52
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
53
    SeqInfo(size_t start, size_t length, size_t seq_idx)
Y
Yu Yang 已提交
54
        : start(start), length(length), seq_idx(seq_idx) {}
55 56 57
    size_t start;
    size_t length;
    size_t seq_idx;
Y
Yu Yang 已提交
58 59
  };

D
dangqingqing 已提交
60
 public:
Q
QI JUN 已提交
61
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
62
                  const framework::LoDTensor& lod_tensor,
63
                  framework::LoDTensor* batch, bool is_cal_batch_lod,
D
dangqingqing 已提交
64 65
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
66
      auto lods = batch->lod();
67 68 69 70 71 72 73
      PADDLE_ENFORCE_GT(
          lods.size(), 2UL,
          platform::errors::InvalidArgument(
              "The LoD of LoDTensor should inlcude at least 2-level "
              "sequence information, but got the LoD level is %lu. Please "
              "check the input value.",
              lods.size()));
74 75
      PADDLE_ENFORCE_EQ(
          lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0]),
76 77 78 79
          platform::errors::InvalidArgument(
              "The LoD information should be consistent with the dims, but got "
              "%lu != %lu. Please check the input value.",
              lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0])));
Q
QI JUN 已提交
80
      CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
81
      to_batch(context, lod_tensor, lods[1], batch, true);
D
dangqingqing 已提交
82 83 84
      return;
    }

85
    auto lods = lod_tensor.lod();
86 87 88 89 90
    PADDLE_ENFORCE_EQ(lods.size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Only support one level sequence now, but got the "
                          "LoD level is %lu. Please check the input value.",
                          lods.size()));
D
dangqingqing 已提交
91

92
    const auto& lod = lods[0];
93

D
dangqingqing 已提交
94
    std::vector<SeqInfo> seq_info;
95
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
96
      size_t length = lod[seq_id + 1] - lod[seq_id];
D
dangqingqing 已提交
97 98 99 100 101 102
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

103
    // Calculate the start position of each batch.
D
dangqingqing 已提交
104 105
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
T
tensor-tang 已提交
106
    //           max_seqlen = 5,
D
dangqingqing 已提交
107 108 109
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
110 111 112 113
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
114 115 116 117 118
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
119 120 121 122
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
T
tensor-tang 已提交
123
    // The max_seqlen represents batch size after rearranging the
D
dangqingqing 已提交
124
    // input LodTensor. It is also the maximum length of input sequence.
125 126

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
127 128
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
129
    batch_lods.emplace_back(std::vector<size_t>{0});
130

D
dangqingqing 已提交
131
    // batch_lods[0] is the start positions for batch LoDTensor
132 133
    size_t max_seqlen = seq_info[0].length;
    batch_lods[0].resize(max_seqlen + 1);
D
dangqingqing 已提交
134
    // batch_lods[1] is the raw index in the input LoDTensor
D
dangqingqing 已提交
135
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
136 137
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());
D
dangqingqing 已提交
138

139 140
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
141
    batch_starts[0] = 0;
142 143
    for (size_t n = 0; n < max_seqlen; n++) {
      size_t batch_id = batch_starts[n];
D
dangqingqing 已提交
144
      for (size_t i = 0; i < seq_info.size(); ++i) {
145 146
        size_t seq_len = seq_info[i].length;
        size_t start = seq_info[i].start;
D
dangqingqing 已提交
147
        if (n < seq_len) {
D
dangqingqing 已提交
148 149
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
150 151 152 153 154
          batch_id++;
        } else {
          break;
        }
      }
155
      batch_starts[n + 1] = batch_id;
D
dangqingqing 已提交
156
    }
157 158 159 160
    size_t* seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
161
    batch->set_lod(batch_lods);
D
dangqingqing 已提交
162

Q
QI JUN 已提交
163
    CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
D
dzhwinter 已提交
164
    to_batch(context, lod_tensor, batch_lods[1], batch, true);
D
dangqingqing 已提交
165
  }
D
dangqingqing 已提交
166
};
D
dangqingqing 已提交
167

Q
QI JUN 已提交
168
template <typename DeviceContext, typename T>
169
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
170
 public:
Q
QI JUN 已提交
171
  void operator()(const DeviceContext& context,
D
dangqingqing 已提交
172
                  const framework::LoDTensor& batch,
173
                  framework::LoDTensor* lod_tensor) const {
174
    auto in_lod = batch.lod();
175 176 177 178 179 180 181
    PADDLE_ENFORCE_GT(
        in_lod.size(), 2UL,
        platform::errors::InvalidArgument(
            "The LoD of LoDTensor should inlcude at least 2-level "
            "sequence information, but got the LoD level is %lu. Please check "
            "the input value.",
            in_lod.size()));
182 183
    PADDLE_ENFORCE_EQ(
        in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0]),
184 185 186 187
        platform::errors::InvalidArgument(
            "The LoD information should be consistent with the dims, but got "
            "%lu != %lu. Please check the input value.",
            in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0])));
Q
QI JUN 已提交
188
    CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
D
dzhwinter 已提交
189
    to_seq(context, batch, in_lod[1], lod_tensor, false);
190
  }
D
dangqingqing 已提交
191
};
D
dangqingqing 已提交
192 193 194 195

}  // namespace math
}  // namespace operators
}  // namespace paddle