scale_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/scale_op.h"
16

M
minqiyang 已提交
17
#include <memory>
18
#include <string>
Y
Yu Yang 已提交
19

20 21
#include "paddle/fluid/operators/detail/safe_ref.h"

Y
Yu Yang 已提交
22 23 24 25 26
namespace paddle {
namespace operators {

class ScaleOp : public framework::OperatorWithKernel {
 public:
27 28 29
  ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
Y
Yu Yang 已提交
30 31
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

32
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ScaleOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ScaleOp should not be null.");
37 38 39 40 41 42 43 44

    if (ctx->IsRuntime() && ctx->HasInput("ScaleTensor")) {
      auto scale = ctx->Inputs("ScaleTensor");
      PADDLE_ENFORCE_EQ(scale.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(ScaleTensor) size must be 1"));
    }

Q
Qiao Longfei 已提交
45 46
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yu Yang 已提交
47 48 49 50 51
  }
};

class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
52
  void Make() override {
53
    AddInput("X", "(Tensor) Input tensor of scale operator.");
54 55 56 57 58
    AddInput("ScaleTensor",
             "(Tensor) If provided, use this as "
             "scale factor, this has a higher priority than "
             "attr(scale), the shape of this tensor MUST BE 1.")
        .AsDispensable();
59 60
    AddOutput("Out", "(Tensor) Output tensor of scale operator.");
    AddComment(R"DOC(
Y
yi.wu 已提交
61 62
**Scale operator**

S
sneaxiy 已提交
63
Apply scaling and bias addition to the input tensor.
Y
Yu Yang 已提交
64

S
sneaxiy 已提交
65 66 67 68 69 70 71
if bias_after_scale=True:

$$Out = scale*X + bias$$

else:

$$Out = scale*(X + bias)$$
Y
Yu Yang 已提交
72
)DOC");
Y
yi.wu 已提交
73
    AddAttr<float>("scale", "The scaling factor of the scale operator.")
C
caoying03 已提交
74
        .SetDefault(1.0);
S
sneaxiy 已提交
75
    AddAttr<float>("bias", "The bias of the scale operator.").SetDefault(0.0);
S
sneaxiy 已提交
76 77 78 79 80
    AddAttr<bool>(
        "bias_after_scale",
        "Apply bias addition after or before scaling. It is useful for "
        "numeric stability in some circumstances.")
        .SetDefault(true);
Y
Yu Yang 已提交
81 82 83
  }
};

84 85
class ScaleOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
86 87 88
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto &in_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
89

90
    if (in_var_name != out_var_name) {
M
minqiyang 已提交
91 92
      ctx->SetType(out_var_name, ctx->GetType(in_var_name));
      ctx->SetDataType(out_var_name, ctx->GetDataType(in_var_name));
93
    }
94 95 96
  }
};

H
hong 已提交
97 98
template <typename T>
class ScaleGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
99
 public:
H
hong 已提交
100
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
101

H
hong 已提交
102 103
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
Y
Yu Yang 已提交
104
    grad_op->SetType("scale");
H
hong 已提交
105
    grad_op->SetInput("X", this->OutputGrad("Out"));
106 107 108
    if (this->HasInput("ScaleTensor") > 0) {
      grad_op->SetInput("ScaleTensor", this->Input("ScaleTensor"));
    }
H
hong 已提交
109 110
    grad_op->SetOutput("Out", this->InputGrad("X"));
    grad_op->SetAttr("scale", this->GetAttr("scale"));
S
sneaxiy 已提交
111
    grad_op->SetAttr("bias", 0.0f);
S
sneaxiy 已提交
112
    grad_op->SetAttr("bias_after_scale", true);
H
hong 已提交
113
    return std::unique_ptr<T>(grad_op);
Y
Yu Yang 已提交
114 115 116
  }
};

117
DECLARE_INPLACE_OP_INFERER(ScaleOpInplace, {"X", "Out"});
Y
Yu Yang 已提交
118 119 120 121 122
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
123 124 125
REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker,
                  ops::ScaleGradMaker<paddle::framework::OpDesc>,
                  ops::ScaleGradMaker<paddle::imperative::OpBase>,
D
dzhwinter 已提交
126
                  ops::ScaleOpVarTypeInference, ops::ScaleOpInplace);
Q
QI JUN 已提交
127 128 129
REGISTER_OP_CPU_KERNEL(
    scale, ops::ScaleKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, double>,
130 131 132
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int16_t>,
Q
QI JUN 已提交
133 134
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ScaleKernel<paddle::platform::CPUDeviceContext, int64_t>);