test_elementwise_sub_op.py 14.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15 16
import unittest
import numpy as np
C
chentianyu03 已提交
17
import paddle
18
import paddle.fluid as fluid
19
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
from paddle.fluid.framework import _test_eager_guard
G
gongweibao 已提交
21 22 23


class TestElementwiseOp(OpTest):
24

G
gongweibao 已提交
25 26 27
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
28 29
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64")
G
gongweibao 已提交
30 31 32 33 34 35 36
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
37
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
38 39

    def test_check_grad_ingore_x(self):
40 41 42 43
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
G
gongweibao 已提交
44 45

    def test_check_grad_ingore_y(self):
46 47 48 49
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
G
gongweibao 已提交
50 51


52
class TestBF16ElementwiseOp(OpTest):
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


80 81
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
82
class TestElementwiseSubOp_scalar(TestElementwiseOp):
83

84 85 86
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
87 88
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
89 90 91 92
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
93
class TestElementwiseSubOp_Vector(TestElementwiseOp):
94

G
gongweibao 已提交
95 96 97
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
98 99
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
G
gongweibao 已提交
100 101 102 103 104
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
105

G
gongweibao 已提交
106 107 108
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
109 110
            'X': np.random.rand(100, 3, 2).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
111 112 113 114
        }

        self.attrs = {'axis': 0}
        self.outputs = {
115
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
116 117 118 119
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
120

G
gongweibao 已提交
121 122 123
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
124 125
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
126 127 128 129
        }

        self.attrs = {'axis': 1}
        self.outputs = {
130
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
131 132 133 134
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
135

G
gongweibao 已提交
136 137 138
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
139 140
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
141 142 143
        }

        self.outputs = {
144
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
145 146 147 148
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
149

G
gongweibao 已提交
150 151 152
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
153 154
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
G
gongweibao 已提交
155 156 157 158
        }

        self.attrs = {'axis': 1}
        self.outputs = {
159
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
160 161 162
        }


163
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
164

165 166 167
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
168 169
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64)
170 171 172 173
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


174
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
175

176 177 178
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
179 180
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
181 182 183 184 185
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
186

187 188 189
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
190 191
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64)
192 193 194 195 196
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
197

198 199 200
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
201 202
            'X': np.random.rand(10, 12).astype(np.float64),
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64)
203 204 205 206 207
        }

        self.attrs = {'axis': 2}

        self.outputs = {
208
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
209 210 211
        }


C
chentianyu03 已提交
212
class TestComplexElementwiseSubOp(OpTest):
213

C
chentianyu03 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
239 240
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
241 242 243 244 245 246 247
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
248 249 250 251
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
252 253

    def test_check_grad_ingore_x(self):
254 255 256 257 258
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
259 260

    def test_check_grad_ingore_y(self):
261 262 263 264 265
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
266 267 268


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
269

C
chentianyu03 已提交
270 271 272 273 274 275 276
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
277 278
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
279 280 281 282
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


283
class TestSubtractApi(unittest.TestCase):
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
327

328 329 330 331 332
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
350

351 352 353 354 355 356
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
357

358 359 360 361 362 363
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
383

384 385 386 387 388 389
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
390

391 392 393 394 395
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
class TestFloatElementwiseSubop(unittest.TestCase):

    def func_dygraph_sub(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        paddle.enable_static()

    def test_dygraph_sub(self):
        with _test_eager_guard():
            self.func_dygraph_sub()
        self.func_dygraph_sub()


G
gongweibao 已提交
439
if __name__ == '__main__':
C
chentianyu03 已提交
440
    paddle.enable_static()
G
gongweibao 已提交
441
    unittest.main()