test_egr_python_api.py 45.4 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.core as core
import paddle
import numpy as np
18
from paddle.fluid.framework import EagerParamBase, _current_expected_place, _disable_legacy_dygraph, _test_eager_guard, in_dygraph_mode
19
import unittest
20
import copy
21 22 23


class EagerScaleTestCase(unittest.TestCase):
24

25
    def test_scale_base(self):
J
Jiabin Yang 已提交
26
        with _test_eager_guard():
27 28 29 30 31 32 33 34 35 36 37 38
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, 'float32', core.CPUPlace())
            print(tensor)
            tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            for i in range(0, 100):
                tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            print(tensor)
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            self.assertEqual(tensor.stop_gradient, True)

    def test_retain_grad_and_run_backward(self):
J
Jiabin Yang 已提交
39
        with _test_eager_guard():
40 41 42 43 44 45 46 47 48
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())

49
            data_eager.retain_grads()
50 51

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
52
            self.assertIsNone(data_eager.grad)
53
            out_eager.backward(grad_eager, False)
54
            self.assertIsNotNone(data_eager.grad)
55
            np.testing.assert_array_equal(data_eager.grad.numpy(), input_data)
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def test_retain_grad_and_run_backward_raises(self):
        with _test_eager_guard():
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_data2 = np.ones([4, 16]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())
            grad_eager2 = paddle.to_tensor(grad_data2, 'float32',
                                           core.CPUPlace())

            data_eager.retain_grads()

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
74
            self.assertIsNone(data_eager.grad)
75 76 77 78 79 80 81 82 83 84
            with self.assertRaisesRegexp(
                    AssertionError,
                    "The type of grad_tensor must be paddle.Tensor"):
                out_eager.backward(grad_data, False)

            with self.assertRaisesRegexp(
                    AssertionError,
                    "Tensor shape not match, Tensor of grad_tensor /*"):
                out_eager.backward(grad_eager2, False)

85 86

class EagerDtypeTestCase(unittest.TestCase):
87

J
Jiabin Yang 已提交
88 89
    def check_to_tesnsor_and_numpy(self, dtype, proto_dtype):
        with _test_eager_guard():
90 91
            arr = np.random.random([4, 16, 16, 32]).astype(dtype)
            tensor = paddle.to_tensor(arr, dtype)
J
Jiabin Yang 已提交
92
            self.assertEqual(tensor.dtype, proto_dtype)
93
            np.testing.assert_array_equal(arr, tensor.numpy())
94 95

    def test_dtype_base(self):
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        print("Test_dtype")
        self.check_to_tesnsor_and_numpy('bool', core.VarDesc.VarType.BOOL)
        self.check_to_tesnsor_and_numpy('int8', core.VarDesc.VarType.INT8)
        self.check_to_tesnsor_and_numpy('uint8', core.VarDesc.VarType.UINT8)
        self.check_to_tesnsor_and_numpy('int16', core.VarDesc.VarType.INT16)
        self.check_to_tesnsor_and_numpy('int32', core.VarDesc.VarType.INT32)
        self.check_to_tesnsor_and_numpy('int64', core.VarDesc.VarType.INT64)
        self.check_to_tesnsor_and_numpy('float16', core.VarDesc.VarType.FP16)
        self.check_to_tesnsor_and_numpy('float32', core.VarDesc.VarType.FP32)
        self.check_to_tesnsor_and_numpy('float64', core.VarDesc.VarType.FP64)
        self.check_to_tesnsor_and_numpy('complex64',
                                        core.VarDesc.VarType.COMPLEX64)
        self.check_to_tesnsor_and_numpy('complex128',
                                        core.VarDesc.VarType.COMPLEX128)
110 111


112
class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
113

114
    def constructor(self, place):
115
        egr_tensor = core.eager.Tensor()
116 117
        self.assertEqual(egr_tensor.persistable, False)
        self.assertTrue("generated" in egr_tensor.name)
118
        self.assertEqual(egr_tensor.shape, [0])
119 120 121
        self.assertEqual(egr_tensor.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor.stop_gradient, True)

122 123 124
        egr_tensor0 = core.eager.Tensor(core.VarDesc.VarType.FP32,
                                        [4, 16, 16, 32], "test_eager_tensor",
                                        core.VarDesc.VarType.LOD_TENSOR, True)
125 126 127 128 129 130
        self.assertEqual(egr_tensor0.persistable, True)
        self.assertEqual(egr_tensor0.name, "test_eager_tensor")
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)

        arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
131 132
        egr_tensor1 = core.eager.Tensor(arr0, place, True, False,
                                        "numpy_tensor1", False)
133 134 135 136 137 138
        self.assertEqual(egr_tensor1.persistable, True)
        self.assertEqual(egr_tensor1.name, "numpy_tensor1")
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, False)
        self.assertTrue(egr_tensor1.place._equals(place))
139
        np.testing.assert_array_equal(egr_tensor1.numpy(), arr0)
140 141

        arr1 = np.random.randint(100, size=(4, 16, 16, 32), dtype=np.int64)
142 143
        egr_tensor2 = core.eager.Tensor(arr1, place, False, True,
                                        "numpy_tensor2", True)
144 145 146 147 148 149
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertEqual(egr_tensor2.name, "numpy_tensor2")
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.INT64)
        self.assertEqual(egr_tensor2.stop_gradient, True)
        self.assertTrue(egr_tensor2.place._equals(place))
150
        np.testing.assert_array_equal(egr_tensor2.numpy(), arr1)
151 152

        arr2 = np.random.rand(4, 16, 16, 32, 64).astype('float32')
153
        egr_tensor3 = core.eager.Tensor(arr2)
154 155 156 157 158 159 160 161
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32, 64])
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)
        self.assertTrue(
            egr_tensor3.place._equals(
                paddle.fluid.framework._current_expected_place()))
162
        np.testing.assert_array_equal(egr_tensor3.numpy(), arr2)
163 164

        egr_tensor3.stop_gradient = False
165
        egr_tensor4 = core.eager.Tensor(egr_tensor3)
166 167 168 169 170 171 172 173
        self.assertEqual(egr_tensor4.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, egr_tensor3.shape)
        self.assertEqual(egr_tensor4.dtype, egr_tensor3.dtype)
        self.assertEqual(egr_tensor4.stop_gradient, True)
        self.assertTrue(
            egr_tensor4.place._equals(
                paddle.fluid.framework._current_expected_place()))
174
        np.testing.assert_array_equal(egr_tensor4.numpy(), egr_tensor3.numpy())
175 176

        arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
177
        egr_tensor5 = core.eager.Tensor(arr4, place)
178 179 180 181 182 183
        self.assertEqual(egr_tensor5.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)
        self.assertTrue(egr_tensor5.place._equals(place))
184
        np.testing.assert_array_equal(egr_tensor5.numpy(), arr4)
185

186
        egr_tensor6 = core.eager.Tensor(egr_tensor5, core.CPUPlace())
187 188 189 190 191 192
        self.assertEqual(egr_tensor6.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)
        self.assertEqual(egr_tensor6.place.is_cpu_place(), True)
193
        np.testing.assert_array_equal(egr_tensor6.numpy(), egr_tensor5.numpy())
194

195
        egr_tensor7 = core.eager.Tensor(arr4, place, True)
196 197 198 199 200 201
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)
        self.assertTrue(egr_tensor7.place._equals(place))
202
        np.testing.assert_array_equal(egr_tensor7.numpy(), arr4)
203

204
        egr_tensor8 = core.eager.Tensor(egr_tensor6, place, "egr_tensor8")
205 206 207 208 209 210
        self.assertEqual(egr_tensor8.persistable, False)
        self.assertEqual(egr_tensor8.name, "egr_tensor8")
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, True)
        self.assertTrue(egr_tensor8.place._equals(place))
211
        np.testing.assert_array_equal(egr_tensor8.numpy(), egr_tensor5.numpy())
212

213
        egr_tensor9 = core.eager.Tensor(arr4, place, True, True)
214 215 216 217 218 219
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, True)
        self.assertTrue(egr_tensor9.place._equals(place))
220
        np.testing.assert_array_equal(egr_tensor9.numpy(), arr4)
221

222 223 224
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
225
        egr_tensor10 = core.eager.Tensor(t, place)
226 227 228 229 230 231
        self.assertEqual(egr_tensor10.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [3, 3])
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, True)
        self.assertTrue(egr_tensor10.place._equals(place))
232
        np.testing.assert_array_equal(egr_tensor10.numpy(), x)
233

234
        egr_tensor11 = core.eager.Tensor(t, place, "framework_constructed")
235 236 237 238 239 240
        self.assertEqual(egr_tensor11.persistable, False)
        self.assertTrue("framework_constructed" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [3, 3])
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, True)
        self.assertTrue(egr_tensor11.place._equals(place))
241
        np.testing.assert_array_equal(egr_tensor11.numpy(), x)
242

243
        egr_tensor12 = core.eager.Tensor(t)
244 245 246 247 248 249
        self.assertEqual(egr_tensor12.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [3, 3])
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, True)
        self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
250
        np.testing.assert_array_equal(egr_tensor12.numpy(), x)
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        with self.assertRaisesRegexp(
                ValueError, "The shape of Parameter should not be None"):
            eager_param = EagerParamBase(shape=None, dtype="float32")

        with self.assertRaisesRegexp(
                ValueError, "The dtype of Parameter should not be None"):
            eager_param = EagerParamBase(shape=[1, 1], dtype=None)

        with self.assertRaisesRegexp(
                ValueError,
                "The dimensions of shape for Parameter must be greater than 0"):
            eager_param = EagerParamBase(shape=[], dtype="float32")

        with self.assertRaisesRegexp(
                ValueError,
                "Each dimension of shape for Parameter must be greater than 0, but received /*"
        ):
            eager_param = EagerParamBase(shape=[-1], dtype="float32")

        eager_param = EagerParamBase(shape=[1, 1], dtype="float32")
        self.assertTrue(eager_param.trainable)
        eager_param.trainable = False
        self.assertFalse(eager_param.trainable)
        with self.assertRaisesRegexp(
                ValueError,
                "The type of trainable MUST be bool, but the type is /*"):
            eager_param.trainable = "False"

280 281 282
        eager_param_2 = EagerParamBase(shape=paddle.shape(
            paddle.to_tensor([1, 2, 3, 4])),
                                       dtype="float32")
283 284 285 286 287 288 289 290
        self.assertTrue(eager_param_2.trainable)
        eager_param_2.trainable = False
        self.assertFalse(eager_param_2.trainable)
        with self.assertRaisesRegexp(
                ValueError,
                "The type of trainable MUST be bool, but the type is /*"):
            eager_param_2.trainable = "False"

291 292 293 294 295 296 297 298 299 300
    def test_constructor(self):
        print("Test_constructor")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor(p)

301
    def constructor_with_kwargs(self, place):
302
        # init Tensor by Python array
303 304
        arr = np.random.rand(4, 16, 16, 32).astype('float32')

305
        egr_tensor0 = core.eager.Tensor(value=arr)
306 307 308 309 310 311 312 313 314
        self.assertEqual(egr_tensor0.persistable, False)
        self.assertTrue("generated" in egr_tensor0.name)
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertTrue(
            egr_tensor0.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor0.stop_gradient, True)

315
        egr_tensor1 = core.eager.Tensor(value=arr, place=place)
316 317 318 319 320 321 322
        self.assertEqual(egr_tensor1.persistable, False)
        self.assertTrue("generated" in egr_tensor1.name)
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, True)

323
        egr_tensor2 = core.eager.Tensor(arr, place=place)
324 325 326 327 328 329 330
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertTrue("generated" in egr_tensor2.name)
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor2.stop_gradient, True)

331 332 333
        egr_tensor3 = core.eager.Tensor(arr,
                                        place=place,
                                        name="new_eager_tensor")
334 335 336 337 338 339 340
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("new_eager_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor3.place._equals(place))
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)

341 342 343 344
        egr_tensor4 = core.eager.Tensor(arr,
                                        place=place,
                                        persistable=True,
                                        name="new_eager_tensor")
345 346 347 348 349 350 351
        self.assertEqual(egr_tensor4.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor4.place._equals(place))
        self.assertEqual(egr_tensor4.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor4.stop_gradient, True)

352 353 354 355 356
        egr_tensor5 = core.eager.Tensor(arr,
                                        core.CPUPlace(),
                                        persistable=True,
                                        name="new_eager_tensor",
                                        zero_copy=True)
357 358 359 360 361 362 363
        self.assertEqual(egr_tensor5.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor5.place.is_cpu_place())
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)

364 365 366 367 368
        egr_tensor6 = core.eager.Tensor(arr,
                                        place=core.CPUPlace(),
                                        persistable=True,
                                        name="new_eager_tensor",
                                        zero_copy=True)
369 370 371 372 373 374 375
        self.assertEqual(egr_tensor6.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor6.place.is_cpu_place())
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)

376 377 378 379 380
        egr_tensor7 = core.eager.Tensor(arr,
                                        place=place,
                                        persistable=True,
                                        name="new_eager_tensor",
                                        zero_copy=True)
381 382 383 384 385 386 387
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)

388 389 390 391 392 393
        egr_tensor8 = core.eager.Tensor(arr,
                                        place=place,
                                        persistable=True,
                                        name="new_eager_tensor",
                                        zero_copy=True,
                                        stop_gradient=False)
394 395 396 397 398 399 400
        self.assertEqual(egr_tensor8.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor8.name)
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, False)

401 402 403 404 405 406
        egr_tensor9 = core.eager.Tensor(arr,
                                        place,
                                        True,
                                        True,
                                        "new_eager_tensor",
                                        stop_gradient=False)
407 408 409 410 411 412 413
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, False)

414 415 416 417 418 419
        egr_tensor10 = core.eager.Tensor(arr,
                                         place,
                                         True,
                                         True,
                                         name="new_eager_tensor",
                                         stop_gradient=False)
420 421 422 423 424 425 426
        self.assertEqual(egr_tensor10.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, False)

427 428 429 430 431 432
        egr_tensor11 = core.eager.Tensor(arr,
                                         place,
                                         True,
                                         zero_copy=True,
                                         name="new_eager_tensor",
                                         stop_gradient=False)
433 434 435 436 437 438 439
        self.assertEqual(egr_tensor11.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, False)

440 441 442 443 444 445
        egr_tensor12 = core.eager.Tensor(arr,
                                         place,
                                         persistable=True,
                                         zero_copy=True,
                                         name="new_eager_tensor",
                                         stop_gradient=False)
446 447 448 449 450 451 452
        self.assertEqual(egr_tensor12.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor12.place._equals(place))
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, False)

453 454 455 456 457 458
        egr_tensor13 = core.eager.Tensor(value=arr,
                                         place=place,
                                         persistable=True,
                                         zero_copy=True,
                                         name="new_eager_tensor",
                                         stop_gradient=False)
459 460 461 462 463 464 465 466
        self.assertEqual(egr_tensor13.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor13.name)
        self.assertEqual(egr_tensor13.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor13.place._equals(place))
        self.assertEqual(egr_tensor13.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor13.stop_gradient, False)

        # special case
467 468 469 470 471
        egr_tensor14 = core.eager.Tensor(dtype=core.VarDesc.VarType.FP32,
                                         dims=[4, 16, 16, 32],
                                         name="special_eager_tensor",
                                         type=core.VarDesc.VarType.LOD_TENSOR,
                                         persistable=True)
472 473 474 475 476
        self.assertEqual(egr_tensor14.persistable, True)
        self.assertEqual(egr_tensor14.name, "special_eager_tensor")
        self.assertEqual(egr_tensor14.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor14.dtype, core.VarDesc.VarType.FP32)

477 478
        # init Tensor by Tensor
        egr_tensor15 = core.eager.Tensor(value=egr_tensor4)
479 480 481 482 483 484 485 486
        self.assertEqual(egr_tensor15.persistable, True)
        self.assertTrue("generated" in egr_tensor15.name)
        self.assertEqual(egr_tensor15.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor15.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor15.stop_gradient, True)
        self.assertTrue(
            egr_tensor15.place._equals(
                paddle.fluid.framework._current_expected_place()))
487
        np.testing.assert_array_equal(egr_tensor15.numpy(), egr_tensor4.numpy())
488

489 490
        egr_tensor16 = core.eager.Tensor(value=egr_tensor4,
                                         name="new_eager_tensor")
491 492 493 494 495 496 497 498
        self.assertEqual(egr_tensor16.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor16.name)
        self.assertEqual(egr_tensor16.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor16.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor16.stop_gradient, True)
        self.assertTrue(
            egr_tensor16.place._equals(
                paddle.fluid.framework._current_expected_place()))
499
        np.testing.assert_array_equal(egr_tensor16.numpy(), egr_tensor4.numpy())
500

501
        egr_tensor17 = core.eager.Tensor(
502 503
            value=egr_tensor4,
            place=place,
504 505
            name="new_eager_tensor",
        )
506 507 508 509 510 511
        self.assertEqual(egr_tensor17.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor17.name)
        self.assertEqual(egr_tensor17.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor17.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor17.stop_gradient, True)
        self.assertTrue(egr_tensor17.place._equals(place))
512
        np.testing.assert_array_equal(egr_tensor17.numpy(), egr_tensor4.numpy())
513

514
        egr_tensor18 = core.eager.Tensor(
515 516
            egr_tensor4,
            place=place,
517 518
            name="new_eager_tensor",
        )
519 520 521 522 523 524
        self.assertEqual(egr_tensor18.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor18.name)
        self.assertEqual(egr_tensor18.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor18.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor18.stop_gradient, True)
        self.assertTrue(egr_tensor18.place._equals(place))
525
        np.testing.assert_array_equal(egr_tensor18.numpy(), egr_tensor4.numpy())
526

527
        egr_tensor19 = core.eager.Tensor(
528 529
            egr_tensor4,
            place,
530 531
            name="new_eager_tensor",
        )
532 533 534 535 536 537
        self.assertEqual(egr_tensor19.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor19.name)
        self.assertEqual(egr_tensor19.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor19.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor19.stop_gradient, True)
        self.assertTrue(egr_tensor19.place._equals(place))
538
        np.testing.assert_array_equal(egr_tensor19.numpy(), egr_tensor4.numpy())
539 540 541 542 543

        # init eager tensor by framework tensor
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
544
        egr_tensor20 = core.eager.Tensor(value=t)
545 546 547 548 549 550 551 552
        self.assertEqual(egr_tensor20.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor20.name)
        self.assertEqual(egr_tensor20.shape, [3, 3])
        self.assertEqual(egr_tensor20.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor20.stop_gradient, True)
        self.assertTrue(
            egr_tensor20.place._equals(
                paddle.fluid.framework._current_expected_place()))
553
        np.testing.assert_array_equal(egr_tensor20.numpy(), x)
554

555
        egr_tensor21 = core.eager.Tensor(value=t, place=place)
556 557 558 559 560 561
        self.assertEqual(egr_tensor21.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor21.name)
        self.assertEqual(egr_tensor21.shape, [3, 3])
        self.assertEqual(egr_tensor21.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor21.stop_gradient, True)
        self.assertTrue(egr_tensor21.place._equals(place))
562
        np.testing.assert_array_equal(egr_tensor21.numpy(), x)
563

564
        egr_tensor22 = core.eager.Tensor(t, place=place)
565 566 567 568 569 570
        self.assertEqual(egr_tensor22.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor22.name)
        self.assertEqual(egr_tensor22.shape, [3, 3])
        self.assertEqual(egr_tensor22.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor22.stop_gradient, True)
        self.assertTrue(egr_tensor22.place._equals(place))
571
        np.testing.assert_array_equal(egr_tensor22.numpy(), x)
572

573
        egr_tensor23 = core.eager.Tensor(t, place, name="from_framework_tensor")
574 575 576 577 578 579
        self.assertEqual(egr_tensor23.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor23.name)
        self.assertEqual(egr_tensor23.shape, [3, 3])
        self.assertEqual(egr_tensor23.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor23.stop_gradient, True)
        self.assertTrue(egr_tensor23.place._equals(place))
580
        np.testing.assert_array_equal(egr_tensor23.numpy(), x)
581

582 583 584
        egr_tensor24 = core.eager.Tensor(value=t,
                                         place=place,
                                         name="from_framework_tensor")
585 586 587 588 589 590
        self.assertEqual(egr_tensor24.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor24.name)
        self.assertEqual(egr_tensor24.shape, [3, 3])
        self.assertEqual(egr_tensor24.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor24.stop_gradient, True)
        self.assertTrue(egr_tensor24.place._equals(place))
591
        np.testing.assert_array_equal(egr_tensor24.numpy(), x)
592 593 594

        # Bad usage
        # SyntaxError: positional argument follows keyword argument
595
        # egr_tensor25 = core.eager.Tensor(value=t, place)
596 597 598 599 600 601 602 603 604 605 606

    def test_constructor_with_kwargs(self):
        print("Test_constructor_with_kwargs")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor_with_kwargs(p)

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def test_copy_and_copy_to(self):
        print("Test_copy_and_copy_to")
        with _test_eager_guard():
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            print("Set persistable")
            tensor.persistable = False
            tensor1 = paddle.to_tensor(arr1, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            tensor1.persistable = True
            self.assertEqual(tensor1.stop_gradient, True)
625
            np.testing.assert_array_equal(tensor.numpy(), arr)
626 627
            print("Test copy_")
            tensor.copy_(tensor1, True)
628
            self.assertEqual(tensor.persistable, False)
629 630
            self.assertEqual(tensor.shape, [4, 16])
            self.assertEqual(tensor.dtype, core.VarDesc.VarType.FP32)
631
            np.testing.assert_array_equal(tensor.numpy(), arr1)
632 633 634 635

            print("Test _copy_to")
            tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
636
            np.testing.assert_array_equal(tensor2.numpy(), arr2)
637 638 639 640
            self.assertTrue(tensor2.place.is_cpu_place())
            tensor2.persistable = True
            tensor2.stop_gradient = False
            if core.is_compiled_with_cuda():
641
                tensor3 = tensor2._copy_to(core.CUDAPlace(0), True)
642
                np.testing.assert_array_equal(tensor3.numpy(), arr2)
J
Jiabin Yang 已提交
643 644
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
645
                self.assertTrue(tensor3.place.is_gpu_place())
J
Jiabin Yang 已提交
646 647

                tensor4 = tensor2.cuda(0, True)
648
                np.testing.assert_array_equal(tensor4.numpy(), arr2)
J
Jiabin Yang 已提交
649 650 651 652 653
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_gpu_place())

                tensor5 = tensor4.cpu()
654
                np.testing.assert_array_equal(tensor5.numpy(), arr2)
J
Jiabin Yang 已提交
655 656 657 658 659 660
                self.assertEqual(tensor5.persistable, True)
                self.assertEqual(tensor5.stop_gradient, False)
                self.assertTrue(tensor5.place.is_cpu_place())

                tensor10 = paddle.to_tensor([1, 2, 3], place='gpu_pinned')
                tensor11 = tensor10._copy_to(core.CUDAPlace(0), True)
661 662
                np.testing.assert_array_equal(tensor10.numpy(),
                                              tensor11.numpy())
663
            else:
664
                tensor3 = tensor2._copy_to(core.CPUPlace(), True)
665
                np.testing.assert_array_equal(tensor3.numpy(), arr2)
J
Jiabin Yang 已提交
666 667
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
668 669
                self.assertTrue(tensor3.place.is_cpu_place())

J
Jiabin Yang 已提交
670
                tensor4 = tensor2.cpu()
671
                np.testing.assert_array_equal(tensor4.numpy(), arr2)
J
Jiabin Yang 已提交
672 673 674 675
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_cpu_place())

676 677
    def test_share_buffer_to(self):
        with _test_eager_guard():
678 679 680 681 682 683 684 685
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
B
Baibaifan 已提交
686
            tensor3 = core.eager.Tensor(value=tensor, place=core.CPUPlace())
687 688 689 690 691 692
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
693 694
            np.testing.assert_array_equal(tensor.numpy(), arr)
            np.testing.assert_array_equal(tensor2.numpy(), arr2)
695
            tensor2._share_buffer_to(tensor)
696 697
            np.testing.assert_array_equal(tensor.numpy(), arr2)
            np.testing.assert_array_equal(tensor2.numpy(), arr2)
698 699 700
            self.assertTrue(tensor._is_shared_buffer_with(tensor2))
            self.assertTrue(tensor2._is_shared_buffer_with(tensor))
            tensor._share_buffer_to(tensor3)
701
            np.testing.assert_array_equal(tensor3.numpy(), arr2)
702 703
            self.assertTrue(tensor3._is_shared_buffer_with(tensor))

704 705 706 707 708 709 710 711 712 713
    def test_share_underline_tensor_to(self):
        with _test_eager_guard():
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
714
            tensor3 = core.eager.Tensor()
715 716 717 718 719 720
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
721 722
            np.testing.assert_array_equal(tensor.numpy(), arr)
            np.testing.assert_array_equal(tensor2.numpy(), arr2)
723
            tensor2._share_underline_tensor_to(tensor)
724 725
            np.testing.assert_array_equal(tensor.numpy(), arr2)
            np.testing.assert_array_equal(tensor2.numpy(), arr2)
726 727 728
            self.assertTrue(tensor._is_shared_underline_tensor_with(tensor2))
            self.assertTrue(tensor2._is_shared_underline_tensor_with(tensor))
            tensor._share_underline_tensor_to(tensor3)
729
            np.testing.assert_array_equal(tensor3.numpy(), arr2)
730 731
            self.assertTrue(tensor3._is_shared_underline_tensor_with(tensor))

732
    def test_properties(self):
J
Jiabin Yang 已提交
733 734
        print("Test_properties")
        with _test_eager_guard():
735 736
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
J
Jiabin Yang 已提交
737 738
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
739 740 741 742 743 744 745 746 747
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            tensor.name = 'tensor_name_test'
            self.assertEqual(tensor.name, 'tensor_name_test')
            self.assertEqual(tensor.persistable, False)
            tensor.persistable = True
            self.assertEqual(tensor.persistable, True)
            tensor.persistable = False
            self.assertEqual(tensor.persistable, False)
            self.assertTrue(tensor.place.is_cpu_place())
748
            self.assertEqual(tensor._place_str, 'Place(cpu)')
749 750 751 752 753
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            self.assertEqual(tensor.stop_gradient, False)
            tensor.stop_gradient = True
            self.assertEqual(tensor.stop_gradient, True)
754
            self.assertEqual(tensor.type, core.VarDesc.VarType.LOD_TENSOR)
755

J
Jiabin Yang 已提交
756 757
    def test_global_properties(self):
        print("Test_global_properties")
J
Jiabin Yang 已提交
758 759
        _disable_legacy_dygraph()
        self.assertTrue(in_dygraph_mode())
J
Jiabin Yang 已提交
760
        with _test_eager_guard():
J
Jiabin Yang 已提交
761 762
            self.assertTrue(in_dygraph_mode())
        self.assertFalse(in_dygraph_mode())
J
Jiabin Yang 已提交
763 764 765 766 767

    def test_place_guard(self):
        if core.is_compiled_with_cuda():
            paddle.set_device("gpu:0")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
J
Jiabin Yang 已提交
768
                self.assertTrue(
769 770
                    isinstance(_current_expected_place(),
                               type(core.CPUPlace())))
J
Jiabin Yang 已提交
771 772 773
        else:
            paddle.set_device("cpu")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
J
Jiabin Yang 已提交
774
                self.assertTrue(
775 776
                    isinstance(_current_expected_place(),
                               type(core.CPUPlace())))
J
Jiabin Yang 已提交
777

778 779 780 781
    def test_value(self):
        with _test_eager_guard():
            arr = np.random.rand(4, 16, 16, 32).astype('float64')

782
            egr_tensor0 = core.eager.Tensor(value=arr)
783 784 785 786 787 788 789 790 791 792 793 794 795 796
            self.assertEqual(egr_tensor0.persistable, False)
            self.assertTrue("generated" in egr_tensor0.name)
            self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
            self.assertTrue(
                egr_tensor0.place._equals(
                    paddle.fluid.framework._current_expected_place()))
            self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP64)
            self.assertEqual(egr_tensor0.stop_gradient, True)
            self.assertTrue(egr_tensor0.value().get_tensor()._dtype(),
                            core.VarDesc.VarType.FP64)
            self.assertTrue(egr_tensor0.value().get_tensor()._place(),
                            paddle.fluid.framework._current_expected_place())
            self.assertTrue(egr_tensor0.value().get_tensor()._is_initialized())

797 798 799
    def test_set_value(self):
        with _test_eager_guard():
            ori_arr = np.random.rand(4, 16, 16, 32).astype('float32')
800
            egr_tensor = core.eager.Tensor(value=ori_arr)
801 802
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
803
            np.testing.assert_array_equal(egr_tensor.numpy(), ori_arr)
804 805
            ori_place = egr_tensor.place

J
Jiabin Yang 已提交
806
            new_arr = np.random.rand(4, 16, 16, 32).astype('float32')
807 808
            self.assertFalse(np.array_equal(egr_tensor.numpy(), new_arr))

J
Jiabin Yang 已提交
809
            egr_tensor.set_value(new_arr)
810 811
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertTrue(egr_tensor.place._equals(ori_place))
J
Jiabin Yang 已提交
812
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
813
            np.testing.assert_array_equal(egr_tensor.numpy(), new_arr)
814

J
Jiabin Yang 已提交
815 816 817
    def test_sharding_related_api(self):
        with _test_eager_guard():
            arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
818
            egr_tensor1 = core.eager.Tensor(arr0, core.CPUPlace(), True, False,
J
Jiabin Yang 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831
                                            "numpy_tensor1", False)
            self.assertEqual(egr_tensor1._numel(), 32768)
            self.assertEqual(egr_tensor1._slice(0, 2)._numel(), 16384)

    def test_copy_gradient_from(self):
        with _test_eager_guard():
            np_x = np.random.random((2, 2))
            np_y = np.random.random((2, 2))
            x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype="float64")
            out = x + x
            out.backward()
            x._copy_gradient_from(y)
832
            np.testing.assert_array_equal(x.grad.numpy(), np_y)
J
Jiabin Yang 已提交
833 834 835 836 837 838 839 840 841

    def test_clear(self):
        with _test_eager_guard():
            np_x = np.random.random((3, 8, 8))
            x = paddle.to_tensor(np_x, dtype="float64")
            self.assertTrue(x._is_initialized())
            x._clear()
            self.assertFalse(x._is_initialized())

842

843
class EagerParamBaseUsageTestCase(unittest.TestCase):
844

845 846 847 848 849 850 851 852 853 854
    def test_print(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(3, 3, bias_attr=False)
            print(linear.weight)

    def test_copy(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            linear_copy = copy.deepcopy(linear)
            linear_copy2 = linear.weight._copy_to(core.CPUPlace(), True)
855 856 857 858
            np.testing.assert_array_equal(linear.weight.numpy(),
                                          linear_copy.weight.numpy())
            np.testing.assert_array_equal(linear.weight.numpy(),
                                          linear_copy2.numpy())
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

    def func_fp16_initilaizer(self):
        paddle.set_default_dtype("float16")
        linear1 = paddle.nn.Linear(1, 3, bias_attr=False)
        linear2 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.Uniform())
        linear3 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.TruncatedNormalInitializer())
        linear4 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.MSRAInitializer())
        res = [
879 880 881 882
            linear1.weight.numpy(),
            linear2.weight.numpy(),
            linear3.weight.numpy(),
            linear4.weight.numpy()
883 884 885 886 887 888 889 890 891 892 893 894 895 896
        ]
        paddle.set_default_dtype("float32")
        return res

    def test_fp16_initializer(self):
        res1 = list()
        res2 = list()
        paddle.seed(102)
        paddle.framework.random._manual_program_seed(102)
        with _test_eager_guard():
            res1 = self.func_fp16_initilaizer()
        res2 = self.func_fp16_initilaizer()

        for i in range(len(res1)):
897
            np.testing.assert_array_equal(res1[i], res2[i])
898 899

    def func_layer_helper_base(self, value):
900 901
        base = paddle.fluid.layer_helper_base.LayerHelperBase(
            "test_layer", "test_layer")
902 903 904 905 906 907 908 909 910 911 912 913 914 915
        return base.to_variable(value).numpy()

    def func_base_to_variable(self, value):
        paddle.fluid.dygraph.base.to_variable(value)

    def test_to_variable(self):
        value = np.random.rand(4, 16, 16, 32).astype('float32')
        res1 = None
        res3 = None
        with _test_eager_guard():
            res1 = self.func_layer_helper_base(value)
            res3 = self.func_base_to_variable(value)
        res2 = self.func_layer_helper_base(value)
        res4 = self.func_base_to_variable(value)
916 917
        np.testing.assert_array_equal(res1, res2)
        np.testing.assert_array_equal(res3, res4)
918

919
    def test_backward_with_single_tensor(self):
920 921
        with _test_eager_guard():
            arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
922
            egr_tensor12 = core.eager.Tensor(arr4, core.CPUPlace())
923 924 925 926 927 928 929 930
            egr_tensor12.retain_grads()
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            self.assertEqual(egr_tensor12.persistable, False)
            self.assertTrue("generated_tensor" in egr_tensor12.name)
            self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
            self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(egr_tensor12.stop_gradient, True)
            self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
931 932
            np.testing.assert_array_equal(egr_tensor12.numpy(), arr4)
            np.testing.assert_array_equal(egr_tensor12.gradient(), None)
933
            egr_tensor12.stop_gradient = False
934
            egr_tensor12.backward()
935
            np.testing.assert_array_equal(egr_tensor12.gradient(), arr)
936

937 938 939 940 941 942 943
    def test_set_value(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            ori_place = linear.weight.place
            new_weight = np.ones([1, 3]).astype('float32')
            self.assertFalse(np.array_equal(linear.weight.numpy(), new_weight))

J
Jiabin Yang 已提交
944
            linear.weight.set_value(new_weight)
945
            np.testing.assert_array_equal(linear.weight.numpy(), new_weight)
946 947
            self.assertTrue(linear.weight.place._equals(ori_place))

948

949
class EagerGuardTestCase(unittest.TestCase):
950

951 952 953
    def test__test_eager_guard(self):
        tracer = paddle.fluid.dygraph.tracer.Tracer()
        with _test_eager_guard(tracer):
J
Jiabin Yang 已提交
954
            self.assertTrue(in_dygraph_mode())
955 956


957 958
if __name__ == "__main__":
    unittest.main()