test_bicubic_interp_op.py 17.6 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
L
Li Fuchen 已提交
21
from paddle.nn.functional import interpolate
X
xiaoting 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


def cubic_1(x, a):
    return ((a + 2) * x - (a + 3)) * x * x + 1


def cubic_2(x, a):
    return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a


def cubic_interp1d(x0, x1, x2, x3, t):
    param = [0, 0, 0, 0]
    a = -0.75
    x_1 = t
    x_2 = 1.0 - t
    param[0] = cubic_2(x_1 + 1.0, a)
    param[1] = cubic_1(x_1, a)
    param[2] = cubic_1(x_2, a)
    param[3] = cubic_2(x_2 + 1.0, a)
    return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]


def value_bound(input, w, h, x, y):
    access_x = int(max(min(x, w - 1), 0))
    access_y = int(max(min(y, h - 1), 0))
    return input[:, :, access_y, access_x]


def bicubic_interp_np(input,
                      out_h,
                      out_w,
                      out_size=None,
                      actual_shape=None,
                      align_corners=True,
                      data_layout='kNCHW'):
    """trilinear interpolation implement in shape [N, C, H, W]"""
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 3, 1, 2))  # NHWC => NCHW
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    if actual_shape is not None:
        out_h = actual_shape[0]
        out_w = actual_shape[1]
    batch_size, channel, in_h, in_w = input.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
        if (align_corners):
            ratio_h = (in_h - 1.0) / (out_h - 1.0)
        else:
            ratio_h = 1.0 * in_h / out_h

    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_h, out_w))

    for k in range(out_h):
        if (align_corners):
            h = ratio_h * k
        else:
            h = ratio_h * (k + 0.5) - 0.5
88
        input_y = np.floor(h)
X
xiaoting 已提交
89 90 91 92 93 94
        y_t = h - input_y
        for l in range(out_w):
            if (align_corners):
                w = ratio_w * l
            else:
                w = ratio_w * (l + 0.5) - 0.5
95
            input_x = np.floor(w)
X
xiaoting 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
            x_t = w - input_x
            for i in range(batch_size):
                for j in range(channel):
                    coefficients = [0, 0, 0, 0]
                    for ii in range(4):
                        access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
                        access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
                        access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
                        access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
                        access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))

                        coefficients[ii] = cubic_interp1d(
                            input[i, j, access_y, access_x_0],
                            input[i, j, access_y, access_x_1],
110 111 112 113 114 115 116
                            input[i, j, access_y,
                                  access_x_2], input[i, j, access_y,
                                                     access_x_3], x_t)
                    out[i, j, k,
                        l] = cubic_interp1d(coefficients[0], coefficients[1],
                                            coefficients[2], coefficients[3],
                                            y_t)
X
xiaoting 已提交
117 118 119 120 121 122
    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 3, 1))  # NCHW => NHWC
    return out.astype(input.dtype)


class TestBicubicInterpOp(OpTest):
123

X
xiaoting 已提交
124 125 126 127 128 129
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "bicubic_interp"
130 131 132
        # NOTE(dev): some AsDispensible input is not used under imperative mode.
        # Skip check_eager while found them in Inputs.
        self.check_eager = True
X
xiaoting 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_h = self.input_shape[2]
            in_w = self.input_shape[3]
        else:
            in_h = self.input_shape[1]
            in_w = self.input_shape[2]

        if self.scale > 0:
            out_h = int(in_h * self.scale)
            out_w = int(in_w * self.scale)
        else:
            out_h = self.out_h
            out_w = self.out_w

        output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size,
                                      self.actual_shape, self.align_corners,
                                      self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
155
            self.check_eager = False
X
xiaoting 已提交
156 157
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape
158
            self.check_eager = False
X
xiaoting 已提交
159 160 161 162 163 164 165 166 167 168 169 170

        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
171
        self.check_output(check_eager=self.check_eager)
X
xiaoting 已提交
172 173

    def test_check_grad(self):
174 175 176 177
        self.check_grad(['X'],
                        'Out',
                        in_place=True,
                        check_eager=self.check_eager)
X
xiaoting 已提交
178 179 180 181 182 183 184 185 186 187 188 189

    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 5, 5]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase1(TestBicubicInterpOp):
190

X
xiaoting 已提交
191 192 193 194 195 196 197 198 199 200
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase2(TestBicubicInterpOp):
201

X
xiaoting 已提交
202 203 204 205 206 207 208 209 210 211
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 10
        self.out_w = 8
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase3(TestBicubicInterpOp):
212

X
xiaoting 已提交
213 214 215 216 217 218 219 220 221 222
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0.
        self.align_corners = False


class TestBicubicInterpCase4(TestBicubicInterpOp):
223

X
xiaoting 已提交
224 225 226 227 228 229 230 231 232 233 234
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.out_size = np.array([2, 2]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase5(TestBicubicInterpOp):
235

X
xiaoting 已提交
236 237 238 239 240 241 242 243 244 245 246
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 11
        self.out_w = 11
        self.scale = 0.
        self.out_size = np.array([6, 4]).astype("int32")
        self.align_corners = False


class TestBicubicInterpCase6(TestBicubicInterpOp):
247

X
xiaoting 已提交
248 249 250 251 252 253 254 255 256 257 258
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0
        self.out_size = np.array([64, 32]).astype("int32")
        self.align_corners = False


class TestBicubicInterpSame(TestBicubicInterpOp):
259

X
xiaoting 已提交
260 261 262 263 264 265 266 267 268 269
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 32, 64]
        self.out_h = 32
        self.out_w = 64
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpDataLayout(TestBicubicInterpOp):
270

X
xiaoting 已提交
271 272 273 274 275 276 277 278 279 280 281 282
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 5, 5, 3]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True
        self.data_layout = "NHWC"


class TestBicubicInterpOpAPI(unittest.TestCase):
283

X
xiaoting 已提交
284
    def test_case(self):
285
        np.random.seed(200)
X
xiaoting 已提交
286 287 288 289 290 291 292 293
        x_data = np.random.random((2, 3, 6, 6)).astype("float32")
        dim_data = np.array([12]).astype("int32")
        shape_data = np.array([12, 12]).astype("int32")
        actual_size_data = np.array([12, 12]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")

        prog = fluid.Program()
        startup_prog = fluid.Program()
294 295
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
X
xiaoting 已提交
296 297 298 299 300 301

        with fluid.program_guard(prog, startup_prog):

            x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

            dim = fluid.data(name="dim", shape=[1], dtype="int32")
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            shape_tensor = fluid.data(name="shape_tensor",
                                      shape=[2],
                                      dtype="int32")
            actual_size = fluid.data(name="actual_size",
                                     shape=[2],
                                     dtype="int32")
            scale_tensor = fluid.data(name="scale_tensor",
                                      shape=[1],
                                      dtype="float32")

            out1 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out2 = interpolate(x,
                               size=[12, dim],
                               mode='bicubic',
                               align_corners=False)
            out3 = interpolate(x,
                               size=shape_tensor,
                               mode='bicubic',
                               align_corners=False)
            out4 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out5 = interpolate(x,
                               scale_factor=scale_tensor,
                               mode='bicubic',
                               align_corners=False)
X
xiaoting 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            results = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "dim": dim_data,
                                  "shape_tensor": shape_data,
                                  "actual_size": actual_size_data,
                                  "scale_tensor": scale_data
                              },
                              fetch_list=[out1, out2, out3, out4, out5],
                              return_numpy=True)

346 347 348 349
            expect_res = bicubic_interp_np(x_data,
                                           out_h=12,
                                           out_w=12,
                                           align_corners=False)
X
xiaoting 已提交
350
            for res in results:
351
                np.testing.assert_allclose(res, expect_res, rtol=1e-05)
X
xiaoting 已提交
352 353 354

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
355 356 357 358
            interp = interpolate(x,
                                 size=[12, 12],
                                 mode='bicubic',
                                 align_corners=False)
X
xiaoting 已提交
359
            dy_result = interp.numpy()
360 361 362 363
            expect = bicubic_interp_np(x_data,
                                       out_h=12,
                                       out_w=12,
                                       align_corners=False)
364
            np.testing.assert_allclose(dy_result, expect, rtol=1e-05)
X
xiaoting 已提交
365 366 367


class TestBicubicOpError(unittest.TestCase):
368

X
xiaoting 已提交
369 370 371
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of interpoalte must be Variable.
372 373
            x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                         [[1, 1, 1, 1]], fluid.CPUPlace())
X
xiaoting 已提交
374 375 376 377 378 379
            self.assertRaises(TypeError, interpolate, x1)

            def test_mode_type():
                # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

380 381 382 383
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='UNKONWN',
                                  align_corners=False)
X
xiaoting 已提交
384 385 386

            def test_input_shape():
                x = fluid.data(name="x", shape=[2], dtype="float32")
387 388 389 390
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
391 392 393

            def test_align_corcers():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
394
                interpolate(x, size=[12, 12], mode='BICUBIC', align_corners=3)
X
xiaoting 已提交
395 396 397

            def test_out_shape():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
398 399 400 401
                out = interpolate(x,
                                  size=[12],
                                  mode='bicubic',
                                  align_corners=False)
X
xiaoting 已提交
402 403 404

            def test_attr_data_format():
                # for 5-D input, data_format only can be NCDHW or NDHWC
405 406 407 408 409 410 411
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NHWC')
X
xiaoting 已提交
412 413 414

            def test_actual_shape():
                # the actual_shape  must be Variable.
415 416 417 418 419 420
                x = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                            [[1, 1, 1, 1]], fluid.CPUPlace())
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
421 422 423 424

            def test_scale_value():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
425 426 427 428 429
                out = interpolate(x,
                                  size=None,
                                  mode='BICUBIC',
                                  align_corners=False,
                                  scale_factor=-2.0)
X
xiaoting 已提交
430 431 432

            def test_attr_5D_input():
                # for 5-D input, data_format only can be NCDHW or NDHWC
433 434 435 436 437 438 439
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NDHWC')
X
xiaoting 已提交
440 441 442 443

            def test_scale_type():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
444 445 446 447 448 449 450 451
                scale = fluid.create_lod_tensor(np.array([-1, 3, 5,
                                                          5]), [[1, 1, 1, 1]],
                                                fluid.CPUPlace())
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=scale)
X
xiaoting 已提交
452 453 454

            def test_align_mode():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
455 456 457 458 459 460
                out = interpolate(x,
                                  size=None,
                                  mode='nearest',
                                  align_corners=False,
                                  align_mode=2,
                                  scale_factor=1.0)
X
xiaoting 已提交
461 462 463

            def test_outshape_and_scale():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
464 465 466 467 468
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=None)
X
xiaoting 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

            self.assertRaises(ValueError, test_mode_type)
            self.assertRaises(ValueError, test_input_shape)
            self.assertRaises(TypeError, test_align_corcers)
            self.assertRaises(ValueError, test_attr_data_format)
            self.assertRaises(TypeError, test_actual_shape)
            self.assertRaises(ValueError, test_scale_value)
            self.assertRaises(ValueError, test_out_shape)
            self.assertRaises(ValueError, test_attr_5D_input)
            self.assertRaises(TypeError, test_scale_type)
            self.assertRaises(ValueError, test_align_mode)
            self.assertRaises(ValueError, test_outshape_and_scale)


if __name__ == "__main__":
484
    paddle.enable_static()
X
xiaoting 已提交
485
    unittest.main()