device_worker.py 17.5 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of device workers."""
15

16 17 18
__all__ = [
    'DeviceWorker', 'Hogwild', 'DownpourSGD', 'Section', 'DownpourSGDOPT'
]
19

20 21

class DeviceWorker(object):
X
xjqbest 已提交
22
    """
23
    DeviceWorker is an abstract class, which generates worker desc.
24 25
    This class is an inner class that we do computation logics within
    the implementation. For example, execution of a program or a graph.
X
xjqbest 已提交
26
    """
27

28
    def __init__(self):
29
        """Init."""
D
dongdaxiang 已提交
30 31
        self._program = None
        self._infer = None
32

33 34 35 36 37 38 39
    def _set_infer(self, infer=False):
        """
        set inference flag for current device worker
        
        Args:
            infer(bool): whether to do inference
        """
D
dongdaxiang 已提交
40
        self._infer = infer
D
dongdaxiang 已提交
41

42
    def _set_fleet_desc(self, fleet_desc):
X
xjqbest 已提交
43 44 45 46 47 48
        """
        Set fleet desc.

        Args:
            fleet_desc(PSParameter): pslib.PSParameter object
        """
D
dongdaxiang 已提交
49
        self._fleet_desc = fleet_desc
D
dongdaxiang 已提交
50

51
    def _set_program(self, program):
X
xjqbest 已提交
52 53 54 55 56 57
        """
        Set program.

        Args:
            program(Program): a Program object
        """
D
dongdaxiang 已提交
58
        self._program = program
59

60
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
61 62 63 64 65 66 67 68 69
        """
        Generator worker desc.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        raise NotImplementedError(
            "DeviceWorker does not implement gen_worker_desc, "
            "please use Hogwild or DownpourSGD, etc.")
70 71 72


class Hogwild(DeviceWorker):
X
xjqbest 已提交
73 74 75 76
    """
    Hogwild is a kind of SGD algorithm.

    """
77

78
    def __init__(self):
79
        """Init."""
80 81
        super(Hogwild, self).__init__()

82
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
83 84 85 86 87 88
        """
        Generator worker desc, which device worker is HogwildWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
89
        trainer_desc.device_worker_name = "HogwildWorker"
D
dongdaxiang 已提交
90
        if self._infer:
91 92
            # just ignore feed op for inference model
            trainer_desc.hogwild_param.skip_ops.extend(["feed"])
93

94 95 96 97 98 99
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
100 101
        # when opt_info is None or empty dict, it should return
        if not opt_info:
102 103 104 105
            return

        program_configs = opt_info["program_configs"]
        downpour = trainer_desc.downpour_param
106
        hogwild = trainer_desc.hogwild_param
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "HogwildWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            sparse_table.fea_dim = \
                self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                i].accessor.fea_dim
            # not use emb_dim
            sparse_table.emb_dim = -1
            # not use hard code click
            sparse_table.label_var_name = ""
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
159
                hogwild.stat_var_names.extend([i])
160 161 162 163 164 165 166 167 168
                downpour.stat_var_names.extend([i])

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
169
        hogwild.skip_ops.extend(worker.get_desc().skip_op)
170
        if self._infer:
171 172
            hogwild.skip_ops.extend(
                ["push_sparse", "push_sparse_v2", "push_dense"])
173

174

D
dongdaxiang 已提交
175
class DownpourSGD(DeviceWorker):
X
xjqbest 已提交
176 177 178
    """
    DownpourSGD is a kind of distributed SGD algorithm.
    """
179

180
    def __init__(self):
X
xjqbest 已提交
181 182
        """
        Init.
183
        initialize downpourSGD device worker
X
xjqbest 已提交
184
        """
D
dongdaxiang 已提交
185
        super(DownpourSGD, self).__init__()
186

187
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
188 189 190 191 192 193
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
X
fix bug  
xjqbest 已提交
194
        dense_table_set = set()
D
dongdaxiang 已提交
195 196
        program_id = str(id(self._program))
        if self._program == None:
D
dongdaxiang 已提交
197
            print("program of current device worker is not configured")
198
            exit(-1)
D
dongdaxiang 已提交
199
        opt_info = self._program._fleet_opt
D
dongdaxiang 已提交
200
        program_configs = opt_info["program_configs"]
201
        downpour = trainer_desc.downpour_param
D
dongdaxiang 已提交
202

D
dongdaxiang 已提交
203 204
        for pid in program_configs:
            if pid == program_id:
D
dongdaxiang 已提交
205 206 207 208 209 210
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
X
xjqbest 已提交
211
                    dense_table_set.add(i)
D
dongdaxiang 已提交
212 213 214 215
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
X
fix bug  
xjqbest 已提交
216
                    dense_table_set.add(i)
D
dongdaxiang 已提交
217
                break
218

219 220 221
        trainer_desc.device_worker_name = "DownpourWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
222 223 224 225 226 227 228 229
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
230 231
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
232
                dense_table.dense_value_name.extend(i.dense_variable_name)
233 234
                dense_table.table_id = \
                    i.table_id
235
        sparse_len = len(worker.get_desc().sparse_table)
236 237
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
238 239 240 241 242 243 244
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
245 246
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
247 248 249 250 251 252 253 254 255 256 257
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim - 2
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
258 259 260
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])
261

262
        for i in worker.get_desc().dense_table:
X
fix bug  
xjqbest 已提交
263 264 265
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
266
                dense_table.dense_value_name.extend(i.dense_variable_name)
X
fix bug  
xjqbest 已提交
267 268
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
X
xujiaqi01 已提交
269
        downpour.skip_ops.extend(worker.get_desc().skip_op)
D
dongdaxiang 已提交
270
        if self._infer:
271 272
            downpour.push_dense = False
            downpour.push_sparse = False
X
fix bug  
xjqbest 已提交
273

274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
class DownpourSGDOPT(DeviceWorker):
    """
    DownpourSGDOPT is a kind of distributed SGD algorithm.
    """

    def __init__(self):
        """
        Init.
        initialize downpourSGDOPT device worker
        """
        super(DownpourSGDOPT, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
        program_configs = opt_info["program_configs"]
        downpour = trainer_desc.downpour_param

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "DownpourWorkerOpt"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                    i].accessor.fea_dim - 2
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
        if "local_tables" in opt_info and sparse_table.table_id in opt_info[
                "local_tables"]:
            sparse_table.is_local = True
        if "async_tables" in opt_info and sparse_table.table_id in opt_info[
                "async_tables"]:
            sparse_table.is_async = True
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
        downpour.skip_ops.extend(worker.get_desc().skip_op)
        if self._infer:
            downpour.push_dense = False
            downpour.push_sparse = False


H
hutuxian 已提交
381
class Section(DeviceWorker):
382
    """SectionWorker."""
H
hutuxian 已提交
383 384

    def __init__(self):
385
        """Init."""
H
hutuxian 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        super(Section, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is SectionWorker.
        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        from google.protobuf import text_format
        from . import core
        trainer_desc.device_worker_name = "SectionWorker"
        pipeline_opt = self._program._pipeline_opt
        section_param = trainer_desc.section_param
        section_param.queue_size = pipeline_opt["queue_size"]
        section_param.sync_steps = pipeline_opt["sync_steps"]
        section_param.start_cpu_core_id = pipeline_opt["start_cpu_core_id"]
        for e in pipeline_opt["param_need_sync"]:
            section_param.param_need_sync.append(e)
        for i, program in enumerate(pipeline_opt["section_program_list"]):
            cfg = section_param.section_config.add()
            cfg.program_desc.ParseFromString(program["program"]._get_desc()
                                             .serialize_to_string())
            # TODO: why does not work
            #cfg.program_desc.CopyFrom(program.program._get_desc())
            place = pipeline_opt["place_list"][i]
            if isinstance(place, core.CPUPlace):
                cfg.place = cfg.CPUPlace
            elif isinstance(place, core.CUDAPlace):
                cfg.place = cfg.CUDAPlace
            elif isinstance(place, core.CUDAPinnedPlace):
                cfg.place = cfg.CUDAPinnedPlace
            else:
                raise NotImplementedError(
                    "SectionWorker only supports CPUPlace, CUDAPlace and CUDAPinnedPlace now."
                )

            cfg.concurrency = pipeline_opt["concurrency_list"][i]
            for var in program["input_set"]:
                cfg.section_in_var_names.append(var)
            for var in program["output_set"]:
                cfg.section_out_var_names.append(var)


429
class DeviceWorkerFactory(object):
430
    def _create_device_worker(self, worker_type):
431 432
        classname = worker_type.capitalize()
        return globals()[classname]()