functors.h 5.9 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
18 19
#include "paddle/fluid/operators/math.h"

C
chengduo 已提交
20 21 22 23
namespace paddle {
namespace operators {
namespace math {

24 25 26 27 28 29 30 31 32 33 34 35 36
// MulFunctor
template <typename T>
struct MulFunctor {
  // out = x * y;
  inline HOSTDEVICE T operator()(T x, T y) { return x * y; }
};

template <typename T>
struct MulGradFunctor {
  inline HOSTDEVICE T Dx(T x, T y) { return y; }
  inline HOSTDEVICE T Dy(T x, T y) { return x; }
};

C
chengduo 已提交
37 38 39 40 41 42 43 44 45
// AddFunctor
template <typename T>
struct AddFunctor {
  // out = x + y;
  inline HOSTDEVICE T operator()(T x, T y) { return x + y; }
};

template <typename T>
struct AddGradFunctor {
46 47
  inline HOSTDEVICE T Dx(T x, T y) { return static_cast<T>(1.); }
  inline HOSTDEVICE T Dy(T x, T y) { return static_cast<T>(1.); }
C
chengduo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
};

template <typename T>
struct ScaleFunctor {
  explicit ScaleFunctor(const T coeff) : coeff_(coeff) {}

  inline HOSTDEVICE T operator()(T ele) { return ele * coeff_; }

 private:
  T coeff_;
};

template <typename T>
struct ScaleGradFunctor {
  explicit ScaleGradFunctor(T coeff) : coeff_(coeff) {}

C
chengduo 已提交
64 65 66
  inline HOSTDEVICE T UseX(T x) { return coeff_; }
  inline HOSTDEVICE T UseOut(T out) { return coeff_; }
  inline HOSTDEVICE T UseXAndOut(T x, T out) { return coeff_; }
C
chengduo 已提交
67 68 69 70 71 72 73

 private:
  T coeff_;
};

template <typename T>
struct ReluFunctor {
74 75 76
  inline HOSTDEVICE T operator()(T x) {
    return x * (x > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0));
  }
C
chengduo 已提交
77 78 79 80
};

template <typename T>
struct ReluGradFunctor {
81 82 83 84 85 86 87 88 89
  inline HOSTDEVICE T UseX(T x) {
    return x > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
  inline HOSTDEVICE T UseOut(T out) {
    return out > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return out > static_cast<T>(0) ? static_cast<T>(1) : static_cast<T>(0);
  }
C
chengduo 已提交
90 91
};

92 93 94 95 96 97
template <typename T>
struct TanhFunctor {
  const T kMin = static_cast<T>(-40);
  const T kMax = static_cast<T>(13);
  inline HOSTDEVICE T operator()(T x) {
    // y = 2 / (1 + e^-2x) - 1
98
    T t0 = static_cast<T>(2) * x;
99
    T t1 = (t0 < kMin) ? kMin : ((t0 > kMax) ? kMax : t0);
100
    return static_cast<T>(2) / (static_cast<T>(1) + real_exp(-t1)) -
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
           static_cast<T>(1);
  }
};

template <typename T>
struct TanhGradFunctor {
  inline HOSTDEVICE T UseX(T x) { return static_cast<T>(1) - x * x; }
  inline HOSTDEVICE T UseOut(T out) { return static_cast<T>(1) - out * out; }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return static_cast<T>(1) - out * out;
  }
};

template <typename T>
struct SigmoidFunctor {
  const T kMin = static_cast<T>(-40);
  const T kMax = static_cast<T>(13);
  inline HOSTDEVICE T operator()(T x) {
    // y = 1 / (1 + e^-x)
    T tmp = (x < kMin) ? kMin : ((x > kMax) ? kMax : x);
121
    return static_cast<T>(1) / (static_cast<T>(1) + real_exp(-tmp));
122 123 124 125 126 127 128 129 130 131 132 133
  }
};

template <typename T>
struct SigmoidGradFunctor {
  inline HOSTDEVICE T UseX(T x) { return x * (static_cast<T>(1) - x); }
  inline HOSTDEVICE T UseOut(T out) { return out * (static_cast<T>(1) - out); }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    return out * (static_cast<T>(1) - out);
  }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <typename T>
struct GeluFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;
  inline HOSTDEVICE T operator()(T x) {
    // this function is tanh approximation of gelu
    // actual gelu is:
    // x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
    MT mx = static_cast<MT>(x);
    MT out = mx * static_cast<MT>(0.5) *
             (static_cast<MT>(1.0) +
              tanh(static_cast<MT>(0.79788456) * mx *
                   (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx)));
    return static_cast<T>(out);
  }
};

template <typename T>
struct GeluGradFunctor {
  using MT = typename details::MPTypeTrait<T>::Type;
  inline HOSTDEVICE T UseX(T x) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
  inline HOSTDEVICE T UseOut(T x) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
  inline HOSTDEVICE T UseXAndOut(T x, T out) {
    MT mx = static_cast<MT>(x);
    MT tanh_out =
        tanh(static_cast<MT>(0.79788456) * mx *
             (static_cast<MT>(1) + static_cast<MT>(0.044715) * mx * mx));
    MT ans = static_cast<MT>(0.5) * mx *
                 ((static_cast<MT>(1) - tanh_out * tanh_out) *
                  (static_cast<MT>(0.79788456) +
                   static_cast<MT>(0.1070322243) * mx * mx)) +
             static_cast<MT>(0.5) * (static_cast<MT>(1) + tanh_out);
    return static_cast<T>(ans);
  }
};

C
chengduo 已提交
191 192 193
}  // namespace math
}  // namespace operators
}  // namespace paddle