algorithms.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from abc import ABC, abstractmethod
import logging

from paddle.distributed.utils import get_logger
from .trial import TrialStatus
from .trial import OptimizationTunerTrial as Trial


class AlgorithmBase(ABC):
    """
26 27
    An Tuning alogrithm is a class to find out an optimal configuration
    given the selected tuning optimization pass(es) and the arguments to be tuned.
28 29 30
    Different optimization pass(es) will correspond to a different algorithm,
    where different search space **pruning rules** will applied.

31
    In another word, the key "algorithm" for this class is the
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    search space pruning rules specific for the given optimization scenario.
    """
    _REGISTERED_ALGORITHMS = {}

    name = None

    @staticmethod
    def _register(algo_name, algo_class):
        assert issubclass(algo_class, AlgorithmBase)
        AlgorithmBase._REGISTERED_ALGORITHMS[algo_name] = algo_class

    def __init__(self, config):
        self._config = config
        self._init_spaces()
        self._logger = get_logger(logging.INFO)
        self._changed_configs = []

    @property
    def changed_configs(self):
        return self._changed_configs[:]

    def collect_model_info(self, main_prog, startup_prog):
        """
55 56 57
        Collect the model static info (from programs) that could be used to
        pruning candidate trials and saving tuning time.For instance,
        model info like number of model parameters and activation memory could be
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        used to prune candidated trial and decide the next trial.
        """
        pass

    @abstractmethod
    def _init_spaces(self):
        pass

    @abstractmethod
    def next_trial(self):
        pass

    @abstractmethod
    def update(self, results):
        """
73
        Update the algorthim with the results of last trial. Using this information is used to
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        pruning the search space of the future trial.
        """
        pass

    def get_config_from_trial(self, trial):
        """
        Return a new fleet.DistributedStrategy with the configurations in trial.
        """
        assert len(self._changed_configs) > 0
        new_strategy = copy.deepcopy(self._config.dist_strategy)
        for name in self._changed_configs:
            config = getattr(trial.space, name)
            setattr(new_strategy, name, config)
        return new_strategy


def register_algor(name):

    def impl(cls):
        AlgorithmBase._register(name, cls)
        cls.name = name
        return cls

    return impl


def new_algorithm(name, config):
    algor_class = AlgorithmBase._REGISTERED_ALGORITHMS.get(name)
    assert algor_class is not None, "Algorithm {} is not defined.".format(name)
    algor_obj = algor_class(config)
    return algor_obj


@register_algor("sharding")
class ShardingStageAlgorithm(AlgorithmBase):

    # TODO import trial class & copy strategy
    def __init__(self, config):
        super().__init__(config)
        self._changed_configs = ["sharding_configs"]

    def _init_spaces(self):
        self._max_stage = 3
        self._trial_idx = 0

        stage_range = self._config.sharding_configs.get("stage_range", None)
        if stage_range:
            assert set(stage_range).issubset(
                set([0, 1, 2, 3])
            ), "Sharding Stage should belong into range within 0 - 3 but got {}.".format(
                stage_range)
            stage_range.sort(reverse=True)
        else:
            stage_range = list(range(self._max_stage + 1)).sort(reverse=True)

        self._stage_range = stage_range[:]
        self._total_num_trial = len(self._stage_range)

    def next_trial(self):

        if self._trial_idx < self._total_num_trial:

            stage = self._stage_range[self._trial_idx]

            new_strategy = copy.deepcopy(self._config.dist_strategy)
            config_dict = new_strategy.sharding_configs
            config_dict["stage"] = stage
            new_strategy.sharding_configs = config_dict

            name = "trial-sharding-stage{}".format(stage)
            trial = Trial(new_strategy, name, self.changed_configs)

            return trial
        else:
            return Trial(None, None, None, status=TrialStatus.STOPPED)

    def update(self, results):

        et = results.get("ErrorType", None)
        if et and et == "ResourceExhaustedError":
            self._trial_idx = self._total_num_trial
            self._logger.info(
                "Last trial is failed with OOM, all remaining trials are pruned to save time !"
            )
        else:
            self._trial_idx += 1