test_detection_map_op.py 10.0 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaox 已提交
15 16 17 18 19 20 21 22 23 24 25 26
import unittest
import numpy as np
import sys
import collections
import math
from op_test import OpTest


class TestDetectionMAPOp(OpTest):
    def set_data(self):
        self.init_test_case()

W
wanghaox 已提交
27
        self.mAP = [self.calc_map(self.tf_pos, self.tf_pos_lod)]
W
wanghaox 已提交
28 29 30 31
        self.label = np.array(self.label).astype('float32')
        self.detect = np.array(self.detect).astype('float32')
        self.mAP = np.array(self.mAP).astype('float32')

W
wanghaox 已提交
32 33 34 35 36
        if (len(self.class_pos_count) > 0):
            self.class_pos_count = np.array(self.class_pos_count).astype(
                'int32')
            self.true_pos = np.array(self.true_pos).astype('float32')
            self.false_pos = np.array(self.false_pos).astype('float32')
37
            self.has_state = np.array([1]).astype('int32')
W
wanghaox 已提交
38 39 40

            self.inputs = {
                'Label': (self.label, self.label_lod),
W
wanghaox 已提交
41
                'DetectRes': (self.detect, self.detect_lod),
42
                'HasState': self.has_state,
W
wanghaox 已提交
43 44 45 46 47 48 49
                'PosCount': self.class_pos_count,
                'TruePos': (self.true_pos, self.true_pos_lod),
                'FalsePos': (self.false_pos, self.false_pos_lod)
            }
        else:
            self.inputs = {
                'Label': (self.label, self.label_lod),
W
wanghaox 已提交
50
                'DetectRes': (self.detect, self.detect_lod),
W
wanghaox 已提交
51
            }
W
wanghaox 已提交
52 53 54 55 56 57 58

        self.attrs = {
            'overlap_threshold': self.overlap_threshold,
            'evaluate_difficult': self.evaluate_difficult,
            'ap_type': self.ap_type
        }

W
wanghaox 已提交
59 60 61 62 63 64 65
        self.out_class_pos_count = np.array(self.out_class_pos_count).astype(
            'int')
        self.out_true_pos = np.array(self.out_true_pos).astype('float32')
        self.out_false_pos = np.array(self.out_false_pos).astype('float32')

        self.outputs = {
            'MAP': self.mAP,
W
wanghaox 已提交
66 67 68
            'AccumPosCount': self.out_class_pos_count,
            'AccumTruePos': (self.out_true_pos, self.out_true_pos_lod),
            'AccumFalsePos': (self.out_false_pos, self.out_false_pos_lod)
W
wanghaox 已提交
69
        }
W
wanghaox 已提交
70 71 72 73

    def init_test_case(self):
        self.overlap_threshold = 0.3
        self.evaluate_difficult = True
W
wanghaox 已提交
74
        self.ap_type = "integral"
W
wanghaox 已提交
75 76

        self.label_lod = [[0, 2, 4]]
W
wanghaox 已提交
77 78 79
        # label difficult xmin ymin xmax ymax
        self.label = [[1, 0, 0.1, 0.1, 0.3, 0.3], [1, 1, 0.6, 0.6, 0.8, 0.8],
                      [2, 0, 0.3, 0.3, 0.6, 0.5], [1, 0, 0.7, 0.1, 0.9, 0.3]]
W
wanghaox 已提交
80

W
wanghaox 已提交
81 82
        # label score xmin ymin xmax ymax difficult
        self.detect_lod = [[0, 3, 7]]
W
wanghaox 已提交
83
        self.detect = [
W
wanghaox 已提交
84 85 86 87
            [1, 0.3, 0.1, 0.0, 0.4, 0.3], [1, 0.7, 0.0, 0.1, 0.2, 0.3],
            [1, 0.9, 0.7, 0.6, 0.8, 0.8], [2, 0.8, 0.2, 0.1, 0.4, 0.4],
            [2, 0.1, 0.4, 0.3, 0.7, 0.5], [1, 0.2, 0.8, 0.1, 1.0, 0.3],
            [3, 0.2, 0.8, 0.1, 1.0, 0.3]
W
wanghaox 已提交
88 89
        ]

W
wanghaox 已提交
90 91 92 93 94
        # label score true_pos false_pos
        self.tf_pos_lod = [[0, 3, 7]]
        self.tf_pos = [[1, 0.9, 1, 0], [1, 0.7, 1, 0], [1, 0.3, 0, 1],
                       [1, 0.2, 1, 0], [2, 0.8, 0, 1], [2, 0.1, 1, 0],
                       [3, 0.2, 0, 1]]
W
wanghaox 已提交
95

W
wanghaox 已提交
96 97 98 99 100 101
        self.class_pos_count = []
        self.true_pos_lod = [[]]
        self.true_pos = [[]]
        self.false_pos_lod = [[]]
        self.false_pos = [[]]

W
wanghaox 已提交
102
    def calc_map(self, tf_pos, tf_pos_lod):
W
wanghaox 已提交
103 104 105
        mAP = 0.0
        count = 0

W
wanghaox 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        def get_input_pos(class_pos_count, true_pos, true_pos_lod, false_pos,
                          false_pos_lod):
            class_pos_count_dict = collections.Counter()
            true_pos_dict = collections.defaultdict(list)
            false_pos_dict = collections.defaultdict(list)
            for i, count in enumerate(class_pos_count):
                class_pos_count_dict[i] = count

            for i in range(len(true_pos_lod[0]) - 1):
                start = true_pos_lod[0][i]
                end = true_pos_lod[0][i + 1]
                for j in range(start, end):
                    true_pos_dict[i].append(true_pos[j])

            for i in range(len(false_pos_lod[0]) - 1):
                start = false_pos_lod[0][i]
                end = false_pos_lod[0][i + 1]
                for j in range(start, end):
                    false_pos_dict[i].append(false_pos[j])

            return class_pos_count_dict, true_pos_dict, false_pos_dict

        def get_output_pos(label_count, true_pos, false_pos):
            max_label = 0
            for (label, label_pos_num) in label_count.items():
                if max_label < label:
                    max_label = label

            label_number = max_label + 1

            out_class_pos_count = []
            out_true_pos_lod = [0]
            out_true_pos = []
            out_false_pos_lod = [0]
            out_false_pos = []

            for i in range(label_number):
                out_class_pos_count.append([label_count[i]])
                true_pos_list = true_pos[i]
                out_true_pos += true_pos_list
                out_true_pos_lod.append(len(out_true_pos))
                false_pos_list = false_pos[i]
                out_false_pos += false_pos_list
                out_false_pos_lod.append(len(out_false_pos))

            return out_class_pos_count, out_true_pos, [
                out_true_pos_lod
            ], out_false_pos, [out_false_pos_lod]
W
wanghaox 已提交
154 155 156 157 158 159 160 161 162 163

        def get_accumulation(pos_list):
            sorted_list = sorted(pos_list, key=lambda pos: pos[0], reverse=True)
            sum = 0
            accu_list = []
            for (score, count) in sorted_list:
                sum += count
                accu_list.append(sum)
            return accu_list

W
wanghaox 已提交
164 165 166
        label_count, true_pos, false_pos = get_input_pos(
            self.class_pos_count, self.true_pos, self.true_pos_lod,
            self.false_pos, self.false_pos_lod)
W
wanghaox 已提交
167
        for (label, difficult, xmin, ymin, xmax, ymax) in self.label:
W
wanghaox 已提交
168 169 170 171 172 173 174
            if self.evaluate_difficult:
                label_count[label] += 1
            elif not difficult:
                label_count[label] += 1

        true_pos = collections.defaultdict(list)
        false_pos = collections.defaultdict(list)
W
wanghaox 已提交
175
        for (label, score, tp, fp) in tf_pos:
W
wanghaox 已提交
176 177 178 179
            true_pos[label].append([score, tp])
            false_pos[label].append([score, fp])

        for (label, label_pos_num) in label_count.items():
W
wanghaox 已提交
180
            if label_pos_num == 0 or label not in true_pos: continue
W
wanghaox 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
            label_true_pos = true_pos[label]
            label_false_pos = false_pos[label]

            accu_tp_sum = get_accumulation(label_true_pos)
            accu_fp_sum = get_accumulation(label_false_pos)

            precision = []
            recall = []

            for i in range(len(accu_tp_sum)):
                precision.append(
                    float(accu_tp_sum[i]) /
                    float(accu_tp_sum[i] + accu_fp_sum[i]))
                recall.append(float(accu_tp_sum[i]) / label_pos_num)

            if self.ap_type == "11point":
W
wanghaox 已提交
197
                max_precisions = [0.0] * 11
W
wanghaox 已提交
198
                start_idx = len(accu_tp_sum) - 1
W
wanghaox 已提交
199 200 201
                for j in range(10, -1, -1):
                    for i in range(start_idx, -1, -1):
                        if recall[i] < float(j) / 10.0:
W
wanghaox 已提交
202 203 204 205
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
W
wanghaox 已提交
206 207 208 209
                        else:
                            if max_precisions[j] < precision[i]:
                                max_precisions[j] = precision[i]
                for j in range(10, -1, -1):
W
wanghaox 已提交
210 211
                    mAP += max_precisions[j] / 11
                count += 1
W
wanghaox 已提交
212
            elif self.ap_type == "integral":
W
wanghaox 已提交
213 214 215 216 217 218 219 220 221 222
                average_precisions = 0.0
                prev_recall = 0.0
                for i in range(len(accu_tp_sum)):
                    if math.fabs(recall[i] - prev_recall) > 1e-6:
                        average_precisions += precision[i] * \
                            math.fabs(recall[i] - prev_recall)
                        prev_recall = recall[i]

                mAP += average_precisions
                count += 1
W
wanghaox 已提交
223 224 225 226
        self.out_class_pos_count, self.out_true_pos, self.out_true_pos_lod, self.out_false_pos, self.out_false_pos_lod = get_output_pos(
            label_count, true_pos, false_pos)
        if count != 0:
            mAP /= count
W
wanghaox 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        return mAP * 100.0

    def setUp(self):
        self.op_type = "detection_map"
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOpSkipDiff, self).init_test_case()

        self.evaluate_difficult = False

W
wanghaox 已提交
243 244 245 246 247 248 249 250 251 252 253
        self.tf_pos_lod = [[0, 2, 6]]
        # label score true_pos false_pos
        self.tf_pos = [[1, 0.7, 1, 0], [1, 0.3, 0, 1], [1, 0.2, 1, 0],
                       [2, 0.8, 0, 1], [2, 0.1, 1, 0], [3, 0.2, 0, 1]]


class TestDetectionMAPOp11Point(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOp11Point, self).init_test_case()

        self.ap_type = "11point"
W
wanghaox 已提交
254 255


W
wanghaox 已提交
256 257 258 259 260 261 262 263 264 265
class TestDetectionMAPOpMultiBatch(TestDetectionMAPOp):
    def init_test_case(self):
        super(TestDetectionMAPOpMultiBatch, self).init_test_case()
        self.class_pos_count = [0, 2, 1]
        self.true_pos_lod = [[0, 0, 3, 5]]
        self.true_pos = [[0.7, 1.], [0.3, 0.], [0.2, 1.], [0.8, 0.], [0.1, 1.]]
        self.false_pos_lod = [[0, 0, 3, 5]]
        self.false_pos = [[0.7, 0.], [0.3, 1.], [0.2, 0.], [0.8, 1.], [0.1, 0.]]


W
wanghaox 已提交
266 267
if __name__ == '__main__':
    unittest.main()