elementwise_op_function.h 20.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
20

C
chengduoZH 已提交
21 22
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
Y
Yu Yang 已提交
23
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
24 25
#endif

Y
Yi Wang 已提交
26
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/platform/for_range.h"
28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
38
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
39 40
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
41
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

64 65 66 67 68 69 70 71 72 73 74 75 76
inline void trim_trailing_singular_dims(framework::DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }
  if (actual_dims_size != dims.size()) {
    auto actual_dims = framework::vectorize(dims);
    actual_dims.resize(actual_dims_size);
    dims = framework::make_ddim(actual_dims);
  }
}

Q
QI JUN 已提交
77
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
78
class RowwiseTransformIterator;
Q
QI JUN 已提交
79
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
80
class MidWiseTransformIterator;
C
chengduoZH 已提交
81 82

template <typename T>
Q
QI JUN 已提交
83
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
84
 public:
C
chengduoZH 已提交
85 86
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
87
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
88
    ++i_;
C
chengduoZH 已提交
89 90 91
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
92 93 94
    return *this;
  }

Q
QI JUN 已提交
95 96
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
97
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
98 99
  }

Q
QI JUN 已提交
100 101
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
102
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
103 104 105 106
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
107
 private:
C
chengduoZH 已提交
108 109
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
110
  int64_t n_;
C
chengduoZH 已提交
111 112 113
};

template <typename T>
Q
QI JUN 已提交
114
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
115
 public:
C
chengduoZH 已提交
116 117 118
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
119
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
120
    ++j_;
C
chengduoZH 已提交
121 122
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
123
      j_ = 0;
C
chengduoZH 已提交
124 125 126
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
127
    }
C
chengduoZH 已提交
128 129 130
    return *this;
  }

Q
QI JUN 已提交
131 132
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
133
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
134 135
  }

Q
QI JUN 已提交
136 137
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
138
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
139 140 141 142
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
143
 private:
C
chengduoZH 已提交
144
  const T* ptr_;
C
refine  
chengduoZH 已提交
145
  int64_t i_;
C
chengduoZH 已提交
146 147
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
148
  int64_t post_;
C
chengduoZH 已提交
149 150
};

C
chengduoZH 已提交
151 152
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
153
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
154
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
155
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
156 157
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
158
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
159
      super_t;
C
chengduoZH 已提交
160
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
161 162 163 164 165 166
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
167
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
168 169 170 171 172
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
173
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
174
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
175
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
176 177
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
178
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
179
      super_t;
C
chengduoZH 已提交
180
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
181 182 183 184 185 186 187
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
188
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
189 190 191 192 193
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

194 195
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
196 197
class TransformFunctor {
 public:
C
chengduoZH 已提交
198
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
199
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
200 201
      : x_(x->data<T>()),
        y_(y->data<T>()),
202
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
203 204 205 206 207
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
208
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
209
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
210 211 212
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
213 214 215
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
216 217 218
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
219 220 221
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
222 223
  }

C
chengduoZH 已提交
224
 private:
C
chengduoZH 已提交
225 226
  const T* x_;
  const T* y_;
227
  OutType* z_;
C
chengduoZH 已提交
228
  int64_t nx_;
Q
QI JUN 已提交
229
  const DeviceContext& ctx_;
C
chengduoZH 已提交
230 231 232
  Functor func_;
};

233 234
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
235
    template <typename DeviceContext, typename T>                              \
236 237 238 239 240 241
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
242 243 244
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
245
    }                                                                          \
Q
QI JUN 已提交
246
    template <typename DeviceContext, typename T>                              \
247 248 249 250 251 252 253 254 255 256
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
257 258 259
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
260
    }                                                                          \
Q
QI JUN 已提交
261
    template <typename DeviceContext, typename T>                              \
262 263 264 265 266 267 268 269 270 271 272
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
273 274 275
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    }                                                                          \
  }

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
  const T* x_;
  const T* y_;
  const T* out_;
  const T* dout_;

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
      dy_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
  T* dx_;
  T* dy_;
};

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  extern __shared__ char shm_buffer[];
  T* shm = reinterpret_cast<T*>(shm_buffer);

  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  shm[tid] = 0;

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
      shm[tid] += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
    __syncthreads();

    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;

    // Sum, could be optimized
    if (threadIdx.x == 0) {
      for (int k = 1; k < h; ++k) {
        shm[0] += shm[k];
      }
      dy[j] = shm[0];
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
                                       T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  int shared_mem_size = block_size * sizeof(T);
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, shared_mem_size,
                                     stream>>>(x, y, out, dout, h, w, dx_op,
                                               dy_op, dx, dy);
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CPU(const T* x, const T* y, const T* out,
                                      const T* dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__

template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
    const T* x, const T* y, const T* out, const T* dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  extern __shared__ char shm_buffer[];
  T* shm = reinterpret_cast<T*>(shm_buffer);
  shm[tid] = 0;
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
      shm[tid] += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
    __syncthreads();
    int h = pre * post;
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;

    // Sum, could be optimized
    if (tid == 0) {
      for (int i = 1; i < h; ++i) {
        shm[0] += shm[i];
      }
      dy[j] = shm[0];
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T* x,
                                       const T* y, const T* out, const T* dout,
                                       int pre, int n, int post, DX_OP dx_op,
                                       DY_OP dy_op, T* dx, T* dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  int shared_mem_size = block_size * sizeof(T);
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, shared_mem_size,
                                     stream>>>(x, y, out, dout, pre, n, post,
                                               dx_op, dy_op, dx, dy);
}

#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
                         const framework::Tensor& x, const framework::Tensor& y,
                         const framework::Tensor& out,
                         const framework::Tensor& dout, int axis,
                         framework::Tensor* dx, framework::Tensor* dy,
                         DX_OP dx_op, DY_OP dy_op) {
  if (x.dims() == y.dims()) {
    size_t N = static_cast<size_t>(framework::product(x.dims()));
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), N);
    for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
        x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
        dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
        dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
  } else {  // Y is a scalar
    auto x_dim = x.dims();
    auto y_dim = y.dims();

    axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
495 496 497
    trim_trailing_singular_dims(y_dim);
    axis = (y_dim.size() == 0) ? x_dim.size() : axis;

Y
Yu Yang 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    int pre, n, post;
    get_mid_dims(x_dim, y_dim, axis, pre, n, post);
    if (post == 1) {
      int h = pre;
      int w = n;
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast1CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast1CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w,
            dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
        ElemwiseGradBroadcast2CUDA(
            ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
            y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
            dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
      } else {
        ElemwiseGradBroadcast2CPU(
            x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
            post, dx_op, dy_op,
            dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
            dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
      }
    }
  }
};

Q
QI JUN 已提交
539
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
540
          typename broadcastfunctor, typename broadcast2functor>
C
chengduoZH 已提交
541 542 543 544 545 546
void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
                            const framework::Tensor* x,
                            const framework::Tensor* y,
                            const framework::Tensor* out,
                            const framework::Tensor* dout, int axis,
                            framework::Tensor* dx, framework::Tensor* dy) {
Q
QI JUN 已提交
547
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
566 567
  trim_trailing_singular_dims(y_dims);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
568 569 570 571 572 573 574 575 576 577 578 579 580 581

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
582

583 584
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
C
chengduoZH 已提交
585 586
void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
                          const framework::Tensor* x,
C
chengduoZH 已提交
587
                          const framework::Tensor* y, int axis, Functor func,
C
chengduoZH 已提交
588
                          framework::Tensor* z) {
589
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
590
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                    "Rank of first input must >= rank of second input.");

  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
605 606
  trim_trailing_singular_dims(y_dims);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
F
fengjiayi 已提交
607 608 609 610 611 612 613 614 615 616 617 618

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

619 620
}  // namespace operators
}  // namespace paddle