control_flow.py 41.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4
from ..layer_helper import LayerHelper, unique_name
from ..framework import Program, Variable, Operator
from .. import core
from tensor import assign, fill_constant
D
dzhwinter 已提交
5
import contextlib
Y
Yang Yu 已提交
6
from ..registry import autodoc
D
dzhwinter 已提交
7

Q
QI JUN 已提交
8
__all__ = [
Y
Yu Yang 已提交
9 10 11 12 13
    'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard',
    'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table',
    'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor',
    'increment', 'array_write', 'create_array', 'less_than', 'array_read',
    'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock',
Y
Yang Yu 已提交
14
    'StaticRNN', 'reorder_lod_tensor_by_rank'
D
dzhwinter 已提交
15 16
]

Y
Yu Yang 已提交
17

18
def split_lod_tensor(input, mask, level=0):
19
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
20 21
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
22 23 24 25 26 27 28 29 30 31 32 33
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


34
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
35
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
36
    out = helper.create_tmp_variable(dtype=in_true.dtype)
37 38 39 40 41 42 43 44 45 46 47
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yu Yang 已提交
48 49
class BlockGuard(object):
    """
50 51 52 53
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
54 55
    """

56 57
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
58
            raise TypeError("BlockGuard takes a program")
59
        self.main_program = main_program
Y
Yu Yang 已提交
60 61

    def __enter__(self):
62
        self.main_program.create_block()
Y
Yu Yang 已提交
63 64

    def __exit__(self, exc_type, exc_val, exc_tb):
65
        self.main_program.rollback()
Y
Yu Yang 已提交
66 67 68 69 70 71
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
72 73 74 75 76 77
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
78 79
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
80
            raise TypeError("StaticRNNGuard takes a StaticRNN")
81
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
82 83 84 85 86 87 88
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
89 90
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
91 92 93 94 95 96 97
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
98 99 100 101 102 103 104 105 106 107 108 109
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
119 120 121 122 123 124
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
125 126 127 128
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

129 130
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

145 146 147 148 149 150 151
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
152 153 154 155 156 157 158 159 160
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
161 162
        self._assert_in_rnn_block_('memory')
        if init is None:
163
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
164
                raise ValueError(
165
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
166 167 168
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
169 170
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
171
                dtype=batch_ref.dtype,
172
                persistable=False)
Y
Yu Yang 已提交
173 174

            parent_block.append_op(
175 176
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
177 178 179
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
180
                    'shape': boot_var.shape,
F
fengjiayi 已提交
181
                    'dtype': boot_var.dtype,
182 183
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
184 185 186 187 188 189
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
190
                dtype=init.dtype,
Y
Yu Yang 已提交
191 192 193 194 195 196 197 198 199 200
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
201 202
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
203 204 205
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
206
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
207 208 209 210 211 212 213 214
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
215
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
216 217 218 219
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
220
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
221

Y
Yu Yang 已提交
222
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
223 224
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
225
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
239
        prog = self.helper.main_program
Y
Yu Yang 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
256 257
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
297
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
298 299 300 301 302

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
303
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
319
                'sub_block': rnn_block
Y
Yu Yang 已提交
320
            })
Y
Yu Yang 已提交
321 322


Y
Yang Yang(Tony) 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

347 348
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
349 350 351 352
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
353
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
396
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
397 398


399
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
400 401 402 403 404 405 406
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
    a length, both of which are int type. Reffering to specified level of LoD,
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
407 408 409 410

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
411
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
412 413 414
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
415 416 417
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
418

Y
yangyaming 已提交
419 420 421 422 423 424 425 426 427
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
428 429 430 431

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
432 433
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
434 435 436 437 438 439 440 441 442 443

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            out = layers.lod_rank_table(x=x, level=0)
444
    """
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
455 456


457
def max_sequence_len(rank_table):
Y
yangyaming 已提交
458
    """Max Sequence Len Operator. Given a LoDRankTable object, this layer
Y
yangyaming 已提交
459 460 461 462
    returns the max length of a batch of sequences. In fact, a LoDRankTable
    object contains a list of tuples(<sequence index, sequence length>) and
    the list is already sorted by sequence length in descending order, so the
    operator just returns the sequence length of the first tuple element.
Y
yangyaming 已提交
463 464 465 466 467

    Args:
        rank_table (Variable): Input variable which is a LoDRankTable object.

    Returns:
Y
yangyaming 已提交
468
        Variable: The max length of sequence.
Y
yangyaming 已提交
469 470 471 472 473 474 475 476

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            rank_table = layers.lod_rank_table(x=x, level=0)
            max_seq_len = layers.max_sequence_len(rank_table)
F
fengjiayi 已提交
477 478 479 480 481 482 483 484 485 486
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


487
def topk(input, k):
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    """
    **topk**

    This function performs the operation that selects the k entries in the input
    vector and outputs their values and indices as vectors. Thus topk_out[j] is
    the j-th largest entry in input, and its index is topk_indices[j]

    Args:
        input (Variable|list): The input tensor that has all the data.
        k (int): The number of top elements that the function will pick.

    Returns:
        Variable: The variable of type array that contains the k largest entries
                  from input.
        Variable: The variable of type array that contains the indices of k
                  largest entries from input.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          k = 5
          array = fluid.layers.topk(x, k)
    """
Y
Yu Yang 已提交
512 513 514 515 516 517 518 519 520 521 522 523
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


524
def lod_tensor_to_array(x, table):
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    """This function performs the operation that converts an LOD_Tensor to
       an array.

    Args:
        x (Variable|list): The tensor that needs to be converted to an array.
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
544
    """
545 546 547
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
548
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
549
        dtype=x.dtype)
550 551 552 553 554 555 556 557
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


558
def array_to_lod_tensor(x, table):
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    """This function performs the operations that converts an array to
       an LOD_Tensor.

    Args:
        x (Variable|list): The array that needs to be converted to a tensor.
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
579
    """
580
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
581
    tmp = helper.create_tmp_variable(dtype=x.dtype)
582 583 584 585 586 587 588 589
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


590
def increment(x, value=1.0, in_place=True):
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    """This function performs an operation that increments each value in the
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
609
    """
Y
Yu Yang 已提交
610
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
611
    if not in_place:
F
fengjiayi 已提交
612
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
613 614
    else:
        out = x
Y
Yu Yang 已提交
615 616 617
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
618
        outputs={'Out': [out]},
619
        attrs={'step': float(value)})
Y
Yang Yu 已提交
620
    return out
Y
Yu Yang 已提交
621 622


623
def array_write(x, i, array=None):
624
    """This function performs the operation to write the data out as an
625
    LOD_TENSOR_ARRAY.
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

    Args:
        x (Variable|list): The input tensor from which the data will be read.
        i (Variable|list): The subscript index in tensor array, that points the
                           place from which data will be read.
        array (Variable|list): The data can be read into this variable if
                               this is assigned.
    Returns:
        Variable: The tensor type variable that has the data written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
642
    """
Y
Yu Yang 已提交
643 644 645 646 647
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
648
            dtype=x.dtype)
Y
Yu Yang 已提交
649 650 651 652 653 654 655 656
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


657
def create_array(dtype):
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the
    LayerHelper.

    Args:
        dtype (int|float): The data type of the elements in the array.

    Returns:
        Variable: The tensor variable storing the elements of data type.

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
673 674 675 676 677 678 679
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


680
def less_than(x, y, cond=None, **ignored):
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    """
    **Less than**

    This layer returns the truth value of :math:`x < y` elementwise.

    Args:
        x(Variable): First operand of *less_than*
        y(Variable): Second operand of *less_than*
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
        Variable: The tensor variable storing the output of *less_than*.

    Examples:
        .. code-block:: python

          less = fluid.layers.less_than(x=label, y=limit)
    """
Y
Yang Yang(Tony) 已提交
699 700 701 702 703 704 705 706 707 708 709
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


710
def array_read(array, i):
K
kavyasrinet 已提交
711
    """This function performs the operation to read the data in as an
712
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
713 714 715 716 717 718 719 720 721 722 723
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
724
    """
Y
Yu Yang 已提交
725 726 727 728 729
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
730
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
731 732 733 734 735 736
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
737 738


739
def shrink_memory(x, i, table):
740 741 742 743
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
744
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
745
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
746
    helper.append_op(
Y
Yang Yu 已提交
747
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
748 749 750 751 752 753
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
754 755


756
def array_length(array):
K
kavyasrinet 已提交
757
    """This function performs the operation to find the length of the input
758
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
774
    """
Y
Yang Yu 已提交
775 776 777 778 779 780
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
800
    def __init__(self, inputs, name=None):
Y
Yu Yang 已提交
801 802 803 804
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
805
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
849
            attrs={'sub_block': inside_block})
Y
Yu Yang 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

890
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
891 892
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
893
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
908
                dtype=x.dtype)
Y
Yu Yang 已提交
909 910 911

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
912
                dtype=x.dtype)
Y
Yu Yang 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
954
                dtype=each_out.dtype)
Y
Yu Yang 已提交
955 956 957
            out_table.append(outside_out)

            # assign local var to outside
958
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
982
                    level=0))
Y
Yu Yang 已提交
983
        return rlist
984 985 986 987 988 989 990


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

991 992
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
        self.zero_idx = fill_constant(shape=[1], value=0, dtype='int64')
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "step_input() can only take a Variable as its input")
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
                name=unique_name('lod_rank_table'),
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
                name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64')
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
                outputs={'Out': self.cond})

        input_array = parent_block.create_var(
            name=unique_name('dynamic_rnn_input_array'),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1046
        return array_read(array=input_array, i=self.step_idx)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
        self.step_idx = fill_constant(shape=[1], dtype='int64', value=0)
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1057
            increment(x=self.step_idx, value=1.0, in_place=True)
1058 1059

            for new_mem, mem_array in self.mem_link:
1060 1061 1062
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

            less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond)
1063 1064 1065 1066 1067

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1068
                    x=each_array, table=self.lod_rank_table))
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
            raise ValueError(
                "Dynamic RNN outputs can only be retrieved after rnn block")
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def memory(self, init=None, shape=None, value=0.0, dtype='float32'):
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
            mem_array = parent_block.create_var(
                name=unique_name('dynamic_rnn_mem_array'),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init,
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1095
            retv = array_read(array=mem_array, i=self.step_idx)
1096
            retv = shrink_memory(
1097
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
                name=unique_name('mem_init'), dtype=dtype)
            arr, dtype = self.input_array[0]
            in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype)
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
                name=unique_name("_".join(
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1167 1168


Y
Yang Yu 已提交
1169
@autodoc
Y
Yang Yu 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out