BufferArg.h 8.4 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"

namespace paddle {

enum BufferType {
X
xutianbing 已提交
26 27 28 29 30
  TENSOR_UNKNOWN = 0,
  TENSOR_NORMAL = 1,
  TENSOR_SEQUENCE_ID = 2,
  TENSOR_SEQUENCE_DATA = 3,
  TENSOR_SPARSE = 4
H
hedaoyuan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;
typedef std::shared_ptr<BufferArg> BufferArgPtr;

45 46 47 48 49 50 51 52 53 54 55 56 57 58
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
59 60 61 62 63 64 65 66 67

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
68
class BufferArg {
69 70 71 72 73
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
74
public:
75 76 77 78 79
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {}
H
hedaoyuan 已提交
80 81 82 83

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

84
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
85 86
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
87
        valueType_(DataType<real>::value),
88 89
        shape_(2),
        argType_(argType) {
X
xutianbing 已提交
90
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
91 92 93 94
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

95 96 97
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
98 99
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
100
        valueType_(DataType<real>::value),
101 102
        shape_(shape),
        argType_(argType) {
X
xutianbing 已提交
103
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
104 105 106
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

107
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
108 109
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
110
        valueType_(DataType<real>::value),
111 112
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
113
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
114 115 116
    shape_.setDim(0, vector.getSize());
  }

117
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
118 119
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
120
        valueType_(VALUE_TYPE_INT32),
121 122
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
123
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
124 125 126 127 128 129 130 131
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
132
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
133 134 135 136 137 138 139 140 141
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
142
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }
X
xutianbing 已提交
158 159
  bool isSparse() const { return (TENSOR_SPARSE == bufferType_); }
  bool isSequenceArg() const { return TENSOR_SEQUENCE_DATA == bufferType_; }
H
hedaoyuan 已提交
160 161 162 163 164 165 166 167

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
X
xutianbing 已提交
168 169
  BufferType bufferType_{TENSOR_UNKNOWN};
  ArgType argType_{UNSPECIFIED};
H
hedaoyuan 已提交
170 171 172 173 174 175 176
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
177
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
178 179
class SequenceIdArg : public BufferArg {
public:
180 181 182 183
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
X
xutianbing 已提交
184
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
185
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
186 187 188 189
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
X
xutianbing 已提交
190
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
191 192 193 194 195 196 197 198 199 200 201
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

X
xutianbing 已提交
202
// sequence data {seqId(vec), buf(matrix)}
H
hedaoyuan 已提交
203 204 205 206 207
class SequenceArg : public BufferArg {
public:
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
208 209 210
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
X
xutianbing 已提交
211 212 213
        startPositions_(startPositions) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
214

215 216 217
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
X
xutianbing 已提交
218 219 220
      : BufferArg(matrix, argType), startPositions_(vector) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
221 222 223 224 225

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }
X
xutianbing 已提交
226
  const SequenceIdArg& getSequenceIds() const { return startPositions_; }
H
hedaoyuan 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
244 245 246
                  SparseDataType type,
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
247 248 249 250 251
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
X
xutianbing 已提交
252
    bufferType_ = TENSOR_SPARSE;
H
hedaoyuan 已提交
253
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
254 255 256
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
H
hedaoyuan 已提交
257 258 259 260 261 262 263
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

264
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
265

266
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle