scale_op.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19 20 21 22 23 24 25
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * ConcatOp
 */
class ScaleOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid scale op to tensorrt mul layer without bias";

    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    std::vector<nvinfer1::ITensor*> itensors;
    std::string input_name = op_desc.Input("X").front();
    std::string out_name = op_desc.Output("Out").front();

    auto input = engine_->GetITensor(input_name);
    bool bias_after_scale =
47 48 49
        BOOST_GET_CONST(bool, op_desc.GetAttr("bias_after_scale"));
    float bias = BOOST_GET_CONST(float, op_desc.GetAttr("bias"));
    float scale = BOOST_GET_CONST(float, op_desc.GetAttr("scale"));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    auto create_weights = [&](float data, std::string type) -> float* {
      std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
      tmp_tensor->Resize({1});
      auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
      tmp_data[0] = data;
      engine_->SetWeights(out_name + "_scale_op_" + type,
                          std::move(tmp_tensor));
      return tmp_data;
    };

    float* bias_ptr = create_weights(bias, "bias");
    float* scale_ptr = create_weights(scale, "scale");

    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(scale_ptr), 1};
    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(bias_ptr), 1};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    nvinfer1::ILayer* layer = nullptr;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    auto input_dim = input->getDimensions();
    PADDLE_ENFORCE_GE(input_dim.nbDims, 3,
                      platform::errors::Fatal(
                          "Paddle-TRT scale mode only support dimension >= 3"));

    nvinfer1::IShuffleLayer* expand_layer = nullptr;
    nvinfer1::IShuffleLayer* squeeze_layer = nullptr;

    if (input_dim.nbDims == 3) {
      // TensorRT scale layer is not supporting input dims < 4 when using
      // explicit batch
      expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
      nvinfer1::Dims4 target_shape(0, 0, 0, 1);  // expand 1 dims
      expand_layer->setReshapeDimensions(target_shape);
      input = expand_layer->getOutput(0);
    }

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    if (bias_after_scale) {
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM,
          shift_weights.get(), scale_weights.get(), power_weights.get());
    } else {
      // add bias
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *(input), nvinfer1::ScaleMode::kUNIFORM,
          shift_weights.get(), power_weights.get(), power_weights.get());
      // mul scale
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *(layer->getOutput(0)), nvinfer1::ScaleMode::kUNIFORM,
          power_weights.get(), scale_weights.get(), power_weights.get());
    }

103 104 105 106 107 108 109 110 111 112 113 114
    PADDLE_ENFORCE_EQ(layer != nullptr, true,
                      platform::errors::Fatal("Create scale layer failed."));

    if (input_dim.nbDims == 3) {
      // TensorRT scale layer is not supporting input dims < 4 when using
      // explicit batch
      squeeze_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(layer->getOutput(0)));
      nvinfer1::Dims3 target_shape(0, 0, 0);  // expand 1 dims
      squeeze_layer->setReshapeDimensions(target_shape);
      layer = static_cast<nvinfer1::ILayer*>(squeeze_layer);
    }
115 116 117 118 119 120 121 122 123
    RreplenishLayerAndOutput(layer, "scale", {out_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(scale, ScaleOpConverter);