dataprovider.py 2.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *
import common_utils  # parse

18

Z
zhangjinchao01 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def hook(settings, meta, **kwargs):
    """
    Init hook is invoked before process data. It will set obj.slots and store
    data meta.

    :param obj: global object. It will passed to process routine.
    :type obj: object
    :param meta: the meta file object, which passed from trainer_config. Meta
                 file record movie/user features.
    :param kwargs: unused other arguments.
    """
    del kwargs  # unused kwargs

    # Header define slots that used for paddle.
    #    first part is movie features.
    #    second part is user features.
    #    final part is rating score.
    # header is a list of [USE_SEQ_OR_NOT?, SlotType]
    headers = list(common_utils.meta_to_header(meta, 'movie'))
    headers.extend(list(common_utils.meta_to_header(meta, 'user')))
    headers.append(dense_vector(1))  # Score

    # slot types.
    settings.input_types = headers
    settings.meta = meta

45

Z
zhangjinchao01 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
@provider(init_hook=hook, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, filename):
    with open(filename, 'r') as f:
        for line in f:
            # Get a rating from file.
            user_id, movie_id, score = map(int, line.split('::')[:-1])

            # Scale score to [-5, +5]
            score = float(score) * 2 - 5.0

            # Get movie/user features by movie_id, user_id
            movie_meta = settings.meta['movie'][movie_id]
            user_meta = settings.meta['user'][user_id]

            outputs = [movie_id - 1]

            # Then add movie features
            for each_meta in movie_meta:
                outputs.append(each_meta)

            # Then add user id.
            outputs.append(user_id - 1)

            # Then add user features.
            for each_meta in user_meta:
                outputs.append(each_meta)

            # Finally, add score
            outputs.append([score])
            # Return data to paddle
            yield outputs