kldiv_loss_op.h 4.0 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

using Array1 = Eigen::DSizes<int64_t, 1>;

template <typename T>
struct KLDivLossForward {
  HOSTDEVICE KLDivLossForward() {}

  HOSTDEVICE T operator()(const T& target, const T& input) const {
D
dengkaipeng 已提交
33
    if (target <= 0) {
D
dengkaipeng 已提交
34 35 36 37 38 39 40
      return 0;
    } else {
      return target * (std::log(target) - input);
    }
  }
};

D
dengkaipeng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
template <typename T>
struct KLDivLossBackward {
  HOSTDEVICE KLDivLossBackward() {}

  HOSTDEVICE T operator()(const T& target, const T& grad) const {
    if (target <= 0) {
      return 0;
    } else {
      return static_cast<T>(-1.) * grad;
    }
  }
};

D
dengkaipeng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename DeviceContext, typename T>
class KLDivLossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto* input = ctx.Input<Tensor>("X");
    auto* target = ctx.Input<Tensor>("Target");
    auto* loss = ctx.Output<Tensor>("Loss");
    auto reduction = ctx.Attr<std::string>("reduction");

    const int n = input->dims()[0];

    loss->mutable_data<T>(ctx.GetPlace());
    auto input_t = EigenVector<T>::Flatten(*input);
    auto target_t = EigenVector<T>::Flatten(*target);
    auto loss_t = EigenVector<T>::Flatten(*loss);
    auto output = target_t.binaryExpr(input_t, KLDivLossForward<T>());
    if ("none" == reduction) {
      loss_t.device(place) = output;
    } else if ("batchmean" == reduction) {
D
dengkaipeng 已提交
74 75
      auto output_sum = output.sum().eval();
      loss_t.device(place) = output_sum / output_sum.constant(n);
D
dengkaipeng 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    } else if ("mean" == reduction) {
      loss_t.device(place) = output.mean();
    } else if ("sum" == reduction) {
      loss_t.device(place) = output.sum();
    }
  }
};

template <typename DeviceContext, typename T>
class KLDivLossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto* target = ctx.Input<Tensor>("Target");
    auto reduction = ctx.Attr<std::string>("reduction");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));

D
dengkaipeng 已提交
94 95
    const int n = input_grad->dims()[0];
    const int numel = input_grad->numel();
D
dengkaipeng 已提交
96 97 98 99 100 101 102 103 104 105
    const int expand = numel / loss_grad->numel();

    input_grad->mutable_data<T>(ctx.GetPlace());

    auto target_t = EigenVector<T>::Flatten(*target);

    auto input_grad_t = EigenVector<T>::Flatten(*input_grad);
    auto loss_grad_t = EigenVector<T>::Flatten(*loss_grad);

    auto loss_grad_expand = loss_grad_t.broadcast(Array1(expand));
D
dengkaipeng 已提交
106 107
    auto grad_t = target_t * loss_grad_expand;
    input_grad_t.device(place) = target_t.binaryExpr(grad_t, KLDivLossBackward<T>());
D
dengkaipeng 已提交
108 109 110 111 112 113 114 115 116 117 118

    if ("mean" == reduction) {
      input_grad_t.device(place) = input_grad_t / static_cast<T>(numel);
    } else if ("batchmean" == reduction) {
      input_grad_t.device(place) = input_grad_t / static_cast<T>(n);
    }
  }
};

}  // namespace operators
}  // namespace paddle