test_anakin_engine.cc 3.1 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

#include <map>

#include "framework/core/net/net.h"
#include "framework/graph/graph.h"
#include "framework/graph/graph_global_mem.h"
#include "paddle/fluid/inference/anakin/engine.h"

using anakin::graph::GraphGlobalMem;
using anakin::AK_FLOAT;
using anakin::Precision;
using anakin::saber::NV;
using anakin::saber::X86;
using anakin::saber::Shape;
using anakin::PBlock;
using anakin::PTuple;
namespace paddle {
namespace inference {
namespace anakin {

class TestAnakinEngine : public ::testing::Test {
 protected:
  void SetUp() override;
  void TearDown() override {}

 protected:
  using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
};

void TestAnakinEngine::SetUp() {
  engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
F
flame 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
}

TEST_F(TestAnakinEngine, Execute) {
  engine_->AddOp("op1", "Dense", {"x"}, {"y"});
  engine_->AddOpAttr("op1", "out_dim", 2);
  engine_->AddOpAttr("op1", "bias_term", false);
  engine_->AddOpAttr("op1", "axis", 1);
  std::vector<int> shape = {1, 1, 1, 2};
  Shape tmp_shape(shape);
  // PBlock<NV> weight1(tmp_shape);
  auto *weight1 =
      GraphGlobalMem<NV>::Global().template new_block<AK_FLOAT>(tmp_shape);
  // auto *weight1 = new PBlock<NV>(tmp_shape, AK_FLOAT);

  float *cpu_data = static_cast<float *>(weight1->h_tensor().mutable_data());
  cpu_data[0] = 2.;
  weight1->d_tensor().set_shape(tmp_shape);
  weight1->d_tensor().copy_from(weight1->h_tensor());
  engine_->AddOpAttr("op1", "weight_1", *weight1);
F
flame 已提交
68

F
flame 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  engine_->Freeze();
  // PTuple<int> input_shape = {1};
  // engine_->AddOpAttr("x", "input_shape", input_shape);
  engine_->SetInputShape("x", {1, 1, 1, 1});
  engine_->Optimize();
  engine_->InitGraph();
  framework::LoDTensor x;
  framework::LoDTensor y;
  x.Resize({1, 1, 1, 1});
  y.Resize({1, 1, 1, 2});
  auto *x_data = x.mutable_data<float>(platform::CUDAPlace());
  float x_data_cpu[] = {1.};
  cudaMemcpy(x_data, x_data_cpu, sizeof(float), cudaMemcpyHostToDevice);

  std::map<std::string, framework::LoDTensor *> inputs = {{"x", &x}};
  auto *y_data = y.mutable_data<float>(platform::CUDAPlace());
  std::map<std::string, framework::LoDTensor *> outputs = {{"y", &y}};

  engine_->Execute(inputs, outputs);
  auto *y_data_gpu = y_data;
  float y_data_cpu[2];
  cudaMemcpy(y_data_cpu, y_data_gpu, sizeof(float) * 2, cudaMemcpyDeviceToHost);
  LOG(INFO) << "output value: " << y_data_cpu[0] << ", " << y_data_cpu[1];
F
flame 已提交
92
}
F
flame 已提交
93

F
flame 已提交
94 95 96
}  // namespace anakin
}  // namespace inference
}  // namespace paddle