fleet_util.py 59.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Fleet Utils."""
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

import collections
import json
import logging
import math
import numpy as np
import os
import sys
import time
import paddle.fluid as fluid
from paddle.fluid.log_helper import get_logger
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
from . import hdfs
from .hdfs import *

__all__ = ["FleetUtil"]

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class FleetUtil(object):
    """
    FleetUtil provides some common functions for users' convenience.

    Examples:
        .. code-block:: python

          from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
          fleet_util = FleetUtil()
          fleet_util.rank0_print("my log")

    """

    def rank0_print(self, s):
        """
        Worker of rank 0 print some log.

        Args:
            s(str): string to print

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.rank0_print("my log")

        """
        if fleet.worker_index() != 0:
            return
        print(s)
        sys.stdout.flush()

    def rank0_info(self, s):
        """
        Worker of rank 0 print some log info.

        Args:
            s(str): string to log

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.rank0_info("my log info")

        """
        if fleet.worker_index() != 0:
            return
        _logger.info(s)

    def rank0_error(self, s):
        """
        Worker of rank 0 print some log error.

        Args:
            s(str): string to log

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.rank0_error("my log error")

        """
        if fleet.worker_index() != 0:
            return
        _logger.error(s)

    def set_zero(self,
                 var_name,
                 scope=fluid.global_scope(),
                 place=fluid.CPUPlace(),
                 param_type="int64"):
        """
        Set tensor of a Variable to zero.

        Args:
            var_name(str): name of Variable
            scope(Scope): Scope object, default is fluid.global_scope()
            place(Place): Place object, default is fluid.CPUPlace()
            param_type(str): param data type, default is int64

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.set_zero(myvar.name, myscope)

        """
        param = scope.var(var_name).get_tensor()
        param_array = np.zeros(param._get_dims()).astype(param_type)
        param.set(param_array, place)

    def print_global_auc(self,
                         scope=fluid.global_scope(),
                         stat_pos="_generated_var_2",
                         stat_neg="_generated_var_3",
                         print_prefix=""):
        """
        Print global auc of all distributed workers.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos(str): name of auc pos bucket Variable
            stat_neg(str): name of auc neg bucket Variable
            print_prefix(str): prefix of print auc

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.print_global_auc(myscope, stat_pos=stat_pos.name,
                                          stat_neg=stat_neg.name)

              # below is part of model
              emb = my_slot_net(slots, label) # emb can be fc layer of size 1
              similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(\
                  emb, min=-15.0, max=15.0), name="similarity_norm")\
              binary_predict = fluid.layers.concat(input=[\
                  fluid.layers.elementwise_sub(\
                      fluid.layers.ceil(similarity_norm), similarity_norm),\
                  similarity_norm], axis=1)
              auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, \
                  stat_neg] = fluid.layers.auc(input=binary_predict,\
                                               label=label, curve='ROC',\
                                               num_thresholds=4096)

        """
        auc_value = self.get_global_auc(scope, stat_pos, stat_neg)
        self.rank0_print(print_prefix + " global auc = %s" % auc_value)

    def get_global_auc(self,
                       scope=fluid.global_scope(),
                       stat_pos="_generated_var_2",
                       stat_neg="_generated_var_3"):
        """
        Get global auc of all distributed workers.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos(str): name of auc pos bucket Variable
            stat_neg(str): name of auc neg bucket Variable

        Returns:
            auc_value(float), total_ins_num(int)

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              auc_value, _ = fleet_util.get_global_auc(myscope,
                                                       stat_pos=stat_pos,
                                                       stat_neg=stat_neg)

        """
        if scope.find_var(stat_pos) is None or scope.find_var(stat_neg) is None:
            self.rank0_print("not found auc bucket")
            return None
        fleet._role_maker._barrier_worker()
        # auc pos bucket
        pos = np.array(scope.find_var(stat_pos).get_tensor())
        # auc pos bucket shape
        old_pos_shape = np.array(pos.shape)
        # reshape to one dim
        pos = pos.reshape(-1)
        global_pos = np.copy(pos) * 0
        # mpi allreduce
        fleet._role_maker._node_type_comm.Allreduce(pos, global_pos)
        # reshape to its original shape
        global_pos = global_pos.reshape(old_pos_shape)

        # auc neg bucket
        neg = np.array(scope.find_var(stat_neg).get_tensor())
        old_neg_shape = np.array(neg.shape)
        neg = neg.reshape(-1)
        global_neg = np.copy(neg) * 0
        fleet._role_maker._node_type_comm.Allreduce(neg, global_neg)
        global_neg = global_neg.reshape(old_neg_shape)

        # calculate auc
        num_bucket = len(global_pos[0])
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
        for i in xrange(num_bucket):
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[0][index]
            total_ins_num += global_pos[0][index]
            new_neg = neg + global_neg[0][index]
            total_ins_num += global_neg[0][index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg

        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)

        fleet._role_maker._barrier_worker()
        return auc_value

    def load_fleet_model_one_table(self, table_id, path):
        """
        load pslib model to one table

        Args:
            table_id(int): load model to one table, default is None, which mean
                           load all table.
            path(str): model path

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.load_fleet_model("hdfs:/my/model/path", table_id=1)
        """
        fleet.load_one_table(table_id, path)

    def load_fleet_model(self, path, mode=0):
        """
        load pslib model

        Args:
            path(str): model path
            mode(str): 0 or 1, which means load checkpoint or delta model,
                       default is 0

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()

              fleet_util.load_fleet_model("hdfs:/my/model/path")

              fleet_util.load_fleet_model("hdfs:/my/model/path", mode=0)

        """
        fleet.init_server(path, mode=mode)

    def save_fleet_model(self, path, mode=0):
        """
        save pslib model

        Args:
            path(str): model path
            mode(str): 0 or 1, which means save checkpoint or delta model,
                       default is 0

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_fleet_model("hdfs:/my/model/path")

        """
        fleet.save_persistables(None, path, mode=mode)

    def _get_xbox_str(self,
                      output_path,
                      day,
                      model_path,
                      xbox_base_key,
                      data_path,
313
                      hadoop_fs_name,
314 315
                      monitor_data={},
                      mode="patch"):
316
        xbox_dict = collections.OrderedDict()
317 318 319 320 321 322 323 324
        if mode == "base":
            xbox_dict["id"] = str(xbox_base_key)
        elif mode == "patch":
            xbox_dict["id"] = str(int(time.time()))
        else:
            print("warning: unknown mode %s, set it to patch" % mode)
            mode = "patch"
            xbox_dict["id"] = str(int(time.time()))
325
        xbox_dict["key"] = str(xbox_base_key)
326 327 328
        if model_path.startswith("hdfs:") or model_path.startswith("afs:"):
            model_path = model_path[model_path.find(":") + 1:]
        xbox_dict["input"] = hadoop_fs_name + model_path.rstrip("/") + "/000"
329
        xbox_dict["record_count"] = "111111"
330
        xbox_dict["partition_type"] = "2"
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        xbox_dict["job_name"] = "default_job_name"
        xbox_dict["ins_tag"] = "feasign"
        xbox_dict["ins_path"] = data_path
        job_id_with_host = os.popen("echo -n ${JOB_ID}").read().strip()
        instance_id = os.popen("echo -n ${INSTANCE_ID}").read().strip()
        start_pos = instance_id.find(job_id_with_host)
        end_pos = instance_id.find("--")
        if start_pos != -1 and end_pos != -1:
            job_id_with_host = instance_id[start_pos:end_pos]
        xbox_dict["job_id"] = job_id_with_host
        # currently hard code here, set monitor_data empty string
        xbox_dict["monitor_data"] = ""
        xbox_dict["monitor_path"] = output_path.rstrip("/") + "/monitor/" \
                                    + day + ".txt"
        xbox_dict["mpi_size"] = str(fleet.worker_num())
        return json.dumps(xbox_dict)

    def write_model_donefile(self,
                             output_path,
                             day,
                             pass_id,
                             xbox_base_key,
                             hadoop_fs_name,
                             hadoop_fs_ugi,
                             hadoop_home="$HADOOP_HOME",
                             donefile_name="donefile.txt"):
        """
        write donefile when save model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
            xbox_base_key(str|int): xbox base key
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            donefile_name(str): donefile name, default is "donefile.txt"

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.write_model_donefile(output_path="hdfs:/my/output",
                                              model_path="hdfs:/my/model",
                                              day=20190723,
                                              pass_id=66,
                                              xbox_base_key=int(time.time()),
                                              hadoop_fs_name="hdfs://xxx",
                                              hadoop_fs_ugi="user,passwd")

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)

        if pass_id != "-1":
            suffix_name = "/%s/%s/" % (day, pass_id)
            model_path = output_path.rstrip("/") + suffix_name
        else:
            suffix_name = "/%s/0/" % day
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
            content  = "%s\t%lu\t%s\t%s\t%d" % (day, xbox_base_key,\
                                                model_path, pass_id, 0)
            configs = {
                "fs.default.name": hadoop_fs_name,
                "hadoop.job.ugi": hadoop_fs_ugi
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
                pre_content = client.cat(donefile_path)
                pre_content_list = pre_content.split("\n")
                day_list = [i.split("\t")[0] for i in pre_content_list]
                pass_list = [i.split("\t")[3] for i in pre_content_list]
                exist = False
                for i in range(len(day_list)):
                    if int(day) == int(day_list[i]) and \
                            int(pass_id) == int(pass_list[i]):
                        exist = True
                        break
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content + "\n")
                        f.write(content + "\n")
                    client.delete(donefile_path)
                    client.upload(
                        output_path,
                        donefile_name,
                        multi_processes=1,
                        overwrite=False)
                    self.rank0_error("write %s/%s %s succeed" % \
                                      (day, pass_id, donefile_name))
                else:
                    self.rank0_error("not write %s because %s/%s already "
                                     "exists" % (donefile_name, day, pass_id))
            else:
                with open(donefile_name, "w") as f:
                    f.write(content + "\n")
                client.upload(
                    output_path,
                    donefile_name,
                    multi_processes=1,
                    overwrite=False)
                self.rank0_error("write %s/%s %s succeed" % \
                               (day, pass_id, donefile_name))
        fleet._role_maker._barrier_worker()

    def write_xbox_donefile(self,
                            output_path,
                            day,
                            pass_id,
                            xbox_base_key,
                            data_path,
                            hadoop_fs_name,
                            hadoop_fs_ugi,
                            monitor_data={},
                            hadoop_home="$HADOOP_HOME",
452
                            donefile_name=None):
453 454 455 456 457 458 459 460 461 462 463 464 465
        """
        write delta donefile or xbox base donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            xbox_base_key(str|int): xbox base key
            data_path(str|list): training data path
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            monitor_data(dict): metrics
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
466
            donefile_name(str): donefile name, default is None"
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.write_xbox_donefile(
                  output_path="hdfs:/my/output/",
                  model_path="hdfs:/my/output/20190722/01",
                  day=20190722,
                  pass_id=1,
                  xbox_base_key=int(time.time()),
                  data_path="hdfs:/my/data/",
                  hadoop_fs_name="hdfs://xxx",
                  hadoop_fs_ugi="user,passwd",
                  monitor_data={}
                  )

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)
489
        mode = None
490 491

        if pass_id != "-1":
492
            mode = "patch"
493 494
            suffix_name = "/%s/delta-%s/" % (day, pass_id)
            model_path = output_path.rstrip("/") + suffix_name
495 496
            if donefile_name is None:
                donefile_name = "xbox_patch_done.txt"
497
        else:
498
            mode = "base"
499 500
            suffix_name = "/%s/base/" % day
            model_path = output_path.rstrip("/") + suffix_name
501 502
            if donefile_name is None:
                donefile_name = "xbox_base_done.txt"
503 504 505 506 507 508 509

        if isinstance(data_path, list):
            data_path = ",".join(data_path)

        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
            xbox_str = self._get_xbox_str(output_path, day, model_path, \
510 511
                    xbox_base_key, data_path, hadoop_fs_name, monitor_data={},
                    mode=mode)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
            configs = {
                "fs.default.name": hadoop_fs_name,
                "hadoop.job.ugi": hadoop_fs_ugi
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
                pre_content = client.cat(donefile_path)
                last_dict = json.loads(pre_content.split("\n")[-1])
                last_day = last_dict["input"].split("/")[-3]
                last_pass = last_dict["input"].split("/")[-2].split("-")[-1]
                exist = False
                if int(day) < int(last_day) or \
                        int(day) == int(last_day) and \
                        int(pass_id) <= int(last_pass):
                    exist = True
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content + "\n")
                        f.write(xbox_str + "\n")
                    client.delete(donefile_path)
                    client.upload(
                        output_path,
                        donefile_name,
                        multi_processes=1,
                        overwrite=False)
                    self.rank0_error("write %s/%s %s succeed" % \
                                      (day, pass_id, donefile_name))
                else:
                    self.rank0_error("not write %s because %s/%s already "
                                     "exists" % (donefile_name, day, pass_id))
            else:
                with open(donefile_name, "w") as f:
                    f.write(xbox_str + "\n")
                client.upload(
                    output_path,
                    donefile_name,
                    multi_processes=1,
                    overwrite=False)
                self.rank0_error("write %s/%s %s succeed" % \
                               (day, pass_id, donefile_name))
        fleet._role_maker._barrier_worker()

    def write_cache_donefile(self,
                             output_path,
                             day,
                             pass_id,
                             key_num,
                             hadoop_fs_name,
                             hadoop_fs_ugi,
                             hadoop_home="$HADOOP_HOME",
562 563
                             donefile_name="sparse_cache.meta",
                             **kwargs):
564 565 566 567 568 569 570 571 572 573 574 575
        """
        write cache donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            key_num(str|int): save cache return value
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            donefile_name(str): donefile name, default is "sparse_cache.meta"
576 577 578
            kwargs(dict): user defined properties
                          file_num(int): cache file num
                          table_id(int): cache table id
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.write_cache_donefile(
                  output_path="hdfs:/my/output/",
                  day=20190722,
                  pass_id=1,
                  key_num=123456,
                  hadoop_fs_name="hdfs://xxx",
                  hadoop_fs_ugi="user,passwd",
                  )

        """
        day = str(day)
        pass_id = str(pass_id)
        key_num = int(key_num)
598 599
        file_num = kwargs.get("file_num", 16)
        table_id = kwargs.get("table_id", 0)
600 601

        if pass_id != "-1":
602
            suffix_name = "/%s/delta-%s/%03d_cache" % (day, pass_id, table_id)
603 604
            model_path = output_path.rstrip("/") + suffix_name
        else:
605
            suffix_name = "/%s/base/%03d_cache" % (day, table_id)
606 607 608 609 610 611 612 613 614 615 616 617 618
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = model_path + "/" + donefile_name
            configs = {
                "fs.default.name": hadoop_fs_name,
                "hadoop.job.ugi": hadoop_fs_ugi
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
                self.rank0_error( \
                    "not write because %s already exists" % donefile_path)
            else:
619 620
                meta_str = "file_prefix:part\npart_num:%s\nkey_num:%d\n" \
                           % (file_num, key_num)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
                with open(donefile_name, "w") as f:
                    f.write(meta_str)
                client.upload(
                    model_path,
                    donefile_name,
                    multi_processes=1,
                    overwrite=False)
                self.rank0_error("write %s succeed" % donefile_path)
        fleet._role_maker._barrier_worker()

    def load_model(self, output_path, day, pass_id):
        """
        load pslib model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.load_model("hdfs:/my/path", 20190722, 88)

        """
        day = str(day)
        pass_id = str(pass_id)
        suffix_name = "/%s/%s/" % (day, pass_id)
        load_path = output_path + suffix_name
        self.rank0_error("going to load_model %s" % load_path)
        self.load_fleet_model(load_path)
        self.rank0_error("load_model done")

    def save_model(self, output_path, day, pass_id):
        """
        save pslib model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_model("hdfs:/my/path", 20190722, 88)

        """
        day = str(day)
        pass_id = str(pass_id)
        suffix_name = "/%s/%s/" % (day, pass_id)
        model_path = output_path + suffix_name
J
jiaqi 已提交
677
        self.rank0_print("going to save_model %s" % model_path)
678
        self.save_fleet_model(model_path)
J
jiaqi 已提交
679
        self.rank0_print("save_model done")
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

    def save_batch_model(self, output_path, day):
        """
        save batch model

        Args:
            output_path(str): output path
            day(str|int): training day

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_batch_model("hdfs:/my/path", 20190722)

        """
        day = str(day)
        suffix_name = "/%s/0/" % day
        model_path = output_path + suffix_name
J
jiaqi 已提交
700
        self.rank0_print("going to save_model %s" % model_path)
701
        fleet.save_persistables(None, model_path, mode=3)
J
jiaqi 已提交
702
        self.rank0_print("save_batch_model done")
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

    def save_delta_model(self, output_path, day, pass_id):
        """
        save delta model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_batch_model("hdfs:/my/path", 20190722, 88)

        """
        day = str(day)
        pass_id = str(pass_id)
        suffix_name = "/%s/delta-%s/" % (day, pass_id)
        model_path = output_path + suffix_name
J
jiaqi 已提交
725
        self.rank0_print("going to save_delta_model %s" % model_path)
726
        fleet.save_persistables(None, model_path, mode=1)
J
jiaqi 已提交
727
        self.rank0_print("save_delta_model done")
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

    def save_xbox_base_model(self, output_path, day):
        """
        save xbox base model

        Args:
            output_path(str): output path
            day(str|int): training day

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_xbox_base_model("hdfs:/my/path", 20190722, 88)

        """
        day = str(day)
        suffix_name = "/%s/base/" % day
        model_path = output_path + suffix_name
J
jiaqi 已提交
748
        self.rank0_print("going to save_xbox_base_model " + model_path)
749
        fleet.save_persistables(None, model_path, mode=2)
J
jiaqi 已提交
750
        self.rank0_print("save_xbox_base_model done")
751

752
    def save_cache_model(self, output_path, day, pass_id, mode=1, **kwargs):
753 754 755 756 757 758 759
        """
        save cache model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
760
            mode(str|int): save mode
761 762
            kwargs(dict): user defined properties
                          table_id(int): table id to save cache
763 764 765 766 767 768 769 770 771 772 773 774 775 776

        Returns:
            key_num(int): cache key num

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_cache_model("hdfs:/my/path", 20190722, 88)

        """
        day = str(day)
        pass_id = str(pass_id)
777
        mode = int(mode)
778
        table_id = kwargs.get("table_id", 0)
779 780
        suffix_name = "/%s/delta-%s" % (day, pass_id)
        model_path = output_path.rstrip("/") + suffix_name
J
jiaqi 已提交
781
        self.rank0_print("going to save_cache_model %s" % model_path)
782 783
        key_num = fleet.save_cache_model(
            None, model_path, mode=mode, table_id=table_id)
J
jiaqi 已提交
784
        self.rank0_print("save_cache_model done")
785 786
        return key_num

787
    def save_cache_base_model(self, output_path, day, **kwargs):
788 789 790 791 792 793 794
        """
        save cache model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
795 796
            kwargs(dict): user defined properties
                          table_id(int): table id to save cache
797 798 799 800 801 802 803 804 805 806 807 808 809

        Returns:
            key_num(int): cache key num

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_cache_base_model("hdfs:/my/path", 20190722)

        """
        day = str(day)
810
        table_id = kwargs.get("table_id", 0)
811 812
        suffix_name = "/%s/base" % day
        model_path = output_path.rstrip("/") + suffix_name
J
jiaqi 已提交
813
        self.rank0_print("going to save_cache_base_model %s" % model_path)
814 815
        key_num = fleet.save_cache_model(
            None, model_path, mode=2, table_id=table_id)
J
jiaqi 已提交
816
        self.rank0_print("save_cache_base_model done")
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        return key_num

    def pull_all_dense_params(self, scope, program):
        """
        pull all dense params in trainer of rank 0

        Args:
            scope(Scope): fluid Scope
            program(Program): fluid Program

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.pull_all_dense_params(my_scope, my_program)

        """
        fleet._role_maker._barrier_worker()
        if fleet._role_maker.is_first_worker():
            prog_id = str(id(program))
X
xujiaqi01 已提交
838 839
            tables = fleet._opt_info["program_id_to_worker"][prog_id].\
                get_desc().dense_table
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
            prog_conf = fleet._opt_info['program_configs'][prog_id]
            prog_tables = {}
            for key in prog_conf:
                if "dense" not in key:
                    continue
                for table_id in prog_conf[key]:
                    prog_tables[int(table_id)] = 0
            for table in tables:
                if int(table.table_id) not in prog_tables:
                    continue
                var_name_list = []
                for i in range(0, len(table.dense_variable_name)):
                    var_name = table.dense_variable_name[i]
                    if scope.find_var(var_name) is None:
                        raise ValueError("var " + var_name +
                                         " not found in scope " +
                                         "when pull dense")
                    var_name_list.append(var_name)
                fleet._fleet_ptr.pull_dense(scope,
                                            int(table.table_id), var_name_list)
        fleet._role_maker._barrier_worker()

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    def save_paddle_inference_model(self,
                                    executor,
                                    scope,
                                    program,
                                    feeded_vars,
                                    target_vars,
                                    output_path,
                                    day,
                                    pass_id,
                                    hadoop_fs_name,
                                    hadoop_fs_ugi,
                                    hadoop_home="$HADOOP_HOME",
                                    save_combine=True):
        """
        save paddle inference model, and upload to hdfs dnn_plugin path

        Args:
            executor(Executor): fluid Executor
            scope(Scope): fluid Scope
            program(Program): fluid Program
            feeded_vars(list[Variable]): feed vars
            target_vars(list[variable]): fetch vars
            output_path(str): hdfs/afs output path
            day(str|int): training day
            pass_id(str|int): training pass
            hadoop_fs_name(str): hadoop fs name
            hadoop_fs_ugi(str): hadoop fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            save_combine(bool): whether to save in a file or seperate files,
                                default is True

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_paddle_inference_model(exe,
                                                     join_scope,
                                                     join_program,
                                                     feeded_vars,
                                                     target_vars,
                                                     "hdfs:/my/output/path/",
                                                     day=20190727,
                                                     pass_id=6,
                                                     hadoop_fs_name="xxx",
                                                     hadoop_fs_ugi="xxx,xxx")
        """
        day = str(day)
        pass_id = str(pass_id)
        feeded_var_names = [i.name for i in feeded_vars]
        model_name = "inference_model"
        # pull dense before save
        self.pull_all_dense_params(scope, program)
        if fleet.worker_index() == 0:
            with fluid.scope_guard(scope):
                if save_combine:
                    fluid.io.save_inference_model(
                        dirname=model_name,
                        feeded_var_names=feeded_var_names,
                        target_vars=target_vars,
X
xujiaqi01 已提交
922
                        executor=executor,
923
                        main_program=program.clone(),
924 925 926 927 928 929
                        params_filename="params")
                else:
                    fluid.io.save_inference_model(
                        dirname=model_name,
                        feeded_var_names=feeded_var_names,
                        target_vars=target_vars,
X
xujiaqi01 已提交
930
                        executor=executor,
931
                        main_program=program.clone())
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

            configs = {
                "fs.default.name": hadoop_fs_name,
                "hadoop.job.ugi": hadoop_fs_ugi
            }
            client = HDFSClient(hadoop_home, configs)

            if pass_id == "-1":
                dest = "%s/%s/base/dnn_plugin/" % (output_path, day)
            else:
                dest = "%s/%s/delta-%s/dnn_plugin/" % (output_path, day,
                                                       pass_id)
            if not client.is_exist(dest):
                client.makedirs(dest)

            client.upload(dest, model_name)

        fleet._role_maker._barrier_worker()

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    def save_paddle_params(self,
                           executor,
                           scope,
                           program,
                           model_name,
                           output_path,
                           day,
                           pass_id,
                           hadoop_fs_name,
                           hadoop_fs_ugi,
                           hadoop_home="$HADOOP_HOME",
                           var_names=None,
                           save_combine=True):
        """
        save paddle model, and upload to hdfs dnn_plugin path

        Args:
            executor(Executor): fluid Executor
            scope(Scope): fluid Scope
            program(Program): fluid Program
            model_name(str): save model local dir or filename
            output_path(str): hdfs/afs output path
            day(str|int): training day
            pass_id(str|int): training pass
            hadoop_fs_name(str): hadoop fs name
            hadoop_fs_ugi(str): hadoop fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            var_names(list): save persistable var names, default is None
            save_combine(bool): whether to save in a file or seperate files,
                                default is True

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.save_paddle_params(exe,
                                            join_scope,
                                            join_program,
                                            "paddle_dense.model.0",
                                            "hdfs:/my/output/path/",
                                            day=20190727,
                                            pass_id=6,
                                            hadoop_fs_name="xxx",
                                            hadoop_fs_ugi="xxx,xxx",
                                            var_names=join_all_var_names)
              fleet_util.save_paddle_params(exe,
                                            join_scope,
                                            join_program,
                                            "paddle_dense.model.usr.0",
                                            "hdfs:/my/output/path/",
                                            day=20190727,
                                            pass_id=6,
                                            hadoop_fs_name="xxx",
                                            hadoop_fs_ugi="xxx,xxx",
                                            var_names=join_user_var_names)
              fleet_util.save_paddle_params(exe,
                                            join_scope,
                                            join_program,
                                            "paddle_dense.model.item.0",
                                            "hdfs:/my/output/path/",
                                            day=20190727,
                                            pass_id=6,
                                            hadoop_fs_name="xxx",
                                            hadoop_fs_ugi="xxx,xxx",
                                            var_names=join_user_item_names)

        """
        day = str(day)
        pass_id = str(pass_id)
        # pull dense before save
        self.pull_all_dense_params(scope, program)
        if fleet.worker_index() == 0:
            vars = [program.global_block().var(i) for i in var_names]
            with fluid.scope_guard(scope):
                if save_combine:
                    fluid.io.save_vars(
                        executor, "./", program, vars=vars, filename=model_name)
                else:
                    fluid.io.save_vars(executor, model_name, program, vars=vars)

            configs = {
                "fs.default.name": hadoop_fs_name,
                "hadoop.job.ugi": hadoop_fs_ugi
            }
            client = HDFSClient(hadoop_home, configs)

            if pass_id == "-1":
                dest = "%s/%s/base/dnn_plugin/" % (output_path, day)
            else:
                dest = "%s/%s/delta-%s/dnn_plugin/" % (output_path, day,
                                                       pass_id)
            if not client.is_exist(dest):
                client.makedirs(dest)

1046 1047 1048 1049
            if os.path.isdir(model_name):
                client.upload_dir(dest, model_name)
            else:
                client.upload(dest, model_name)
1050 1051 1052

        fleet._role_maker._barrier_worker()

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def get_last_save_xbox_base(self,
                                output_path,
                                hadoop_fs_name,
                                hadoop_fs_ugi,
                                hadoop_home="$HADOOP_HOME"):
        """
        get last saved base xbox info from xbox_base_done.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
            [last_save_day, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              last_save_day, last_path, xbox_base_key = \
                  fleet_util.get_last_save_xbox_base("hdfs:/my/path", 20190722,
                                                     88)

        """
        donefile_path = output_path + "/xbox_base_done.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
            "hadoop.job.ugi": hadoop_fs_ugi
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
            return [-1, -1, int(time.time())]
        pre_content = client.cat(donefile_path)
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        return [last_day, last_path, xbox_base_key]

    def get_last_save_xbox(self,
                           output_path,
                           hadoop_fs_name,
                           hadoop_fs_ugi,
                           hadoop_home="$HADOOP_HOME"):
        """
        get last saved xbox info from xbox_patch_done.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
            [last_save_day, last_save_pass, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              last_save_day, last_save_pass, last_path, xbox_base_key = \
                  fleet_util.get_last_save_xbox("hdfs:/my/path", 20190722, 88)

        """
        donefile_path = output_path + "/xbox_patch_done.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
            "hadoop.job.ugi": hadoop_fs_ugi
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
            return [-1, -1, "", int(time.time())]
        pre_content = client.cat(donefile_path)
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_pass = int(last_dict["input"].split("/")[-2].split("-")[-1])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        return [last_day, last_pass, last_path, xbox_base_key]

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    def get_last_save_model(self,
                            output_path,
                            hadoop_fs_name,
                            hadoop_fs_ugi,
                            hadoop_home="$HADOOP_HOME"):
        """
        get last saved model info from donefile.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
1159
            [last_save_day, last_save_pass, last_path, xbox_base_key]
1160 1161 1162
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
1163
            xbox_base_key(int): xbox key
1164 1165 1166 1167 1168 1169

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
1170 1171
              last_save_day, last_save_pass, last_path, xbox_base_key = \
                  fleet_util.get_last_save_model("hdfs:/my/path", 20190722, 88)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

        """
        last_save_day = -1
        last_save_pass = -1
        last_path = ""
        donefile_path = output_path + "/donefile.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
            "hadoop.job.ugi": hadoop_fs_ugi
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
1184
            return [-1, -1, "", int(time.time())]
1185 1186 1187 1188 1189
        content = client.cat(donefile_path)
        content = content.split("\n")[-1].split("\t")
        last_save_day = int(content[0])
        last_save_pass = int(content[3])
        last_path = content[2]
1190 1191
        xbox_base_key = int(content[1])
        return [last_save_day, last_save_pass, last_path, xbox_base_key]
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

    def get_online_pass_interval(self, days, hours, split_interval,
                                 split_per_pass, is_data_hourly_placed):
        """
        get online pass interval

        Args:
            days(str): days to train
            hours(str): hours to train
            split_interval(int|str): split interval
            split_per_pass(int}str): split per pass
            is_data_hourly_placed(bool): is data hourly placed

        Returns:
            online_pass_interval(list)

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              online_pass_interval = fleet_util.get_online_pass_interval(
                  days="{20190720..20190729}",
                  hours="{0..23}",
                  split_interval=5,
                  split_per_pass=2,
                  is_data_hourly_placed=False)

        """
        days = os.popen("echo -n " + days).read().split(" ")
        hours = os.popen("echo -n " + hours).read().split(" ")
        split_interval = int(split_interval)
        split_per_pass = int(split_per_pass)
        splits_per_day = 24 * 60 / split_interval
        pass_per_day = splits_per_day / split_per_pass
        left_train_hour = int(hours[0])
        right_train_hour = int(hours[-1])

        start = 0
        split_path = []
        for i in range(splits_per_day):
            h = start / 60
            m = start % 60
            if h < left_train_hour or h > right_train_hour:
                start += split_interval
                continue
            if is_data_hourly_placed:
                split_path.append("%02d" % h)
            else:
                split_path.append("%02d%02d" % (h, m))
            start += split_interval

        start = 0
        online_pass_interval = []
        for i in range(pass_per_day):
            online_pass_interval.append([])
            for j in range(start, start + split_per_pass):
                online_pass_interval[i].append(split_path[j])
            start += split_per_pass

        return online_pass_interval

    def get_global_metrics(self,
                           scope=fluid.global_scope(),
                           stat_pos_name="_generated_var_2",
                           stat_neg_name="_generated_var_3",
                           sqrerr_name="sqrerr",
                           abserr_name="abserr",
                           prob_name="prob",
                           q_name="q",
                           pos_ins_num_name="pos",
                           total_ins_num_name="total"):
        """
        get global metrics, including auc, bucket_error, mae, rmse,
        actual_ctr, predicted_ctr, copc, mean_predict_qvalue, total_ins_num.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos_name(str): name of auc pos bucket Variable
            stat_neg_name(str): name of auc neg bucket Variable
            sqrerr_name(str): name of sqrerr Variable
            abserr_name(str): name of abserr Variable
            prob_name(str): name of prob Variable
            q_name(str): name of q Variable
            pos_ins_num_name(str): name of pos ins num Variable
            total_ins_num_name(str): name of total ins num Variable

        Returns:
            [auc, bucket_error, mae, rmse, actual_ctr, predicted_ctr, copc,
             mean_predict_qvalue, total_ins_num]

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              metric_list = fleet_util.get_global_metrics(myscope,
                                                          stat_pos.nane,
                                                          stat_neg.name,
                                                          local_sqrerr.name,
                                                          local_abserr.name,
                                                          local_prob.name,
                                                          local_q.name,
                                                          local_pos_ins.name,
                                                          local_total_ins.name)

1298
              # below is part of example model
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
              label = fluid.layers.data(name="click", shape=[-1, 1],\
                  dtype="int64", lod_level=0, append_batch_size=False)
              emb = my_slot_net(slots, label) # emb can be fc layer of size 1
              similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(\
                  emb, min=-15.0, max=15.0), name="similarity_norm")\
              binary_predict = fluid.layers.concat(input=[\
                  fluid.layers.elementwise_sub(\
                      fluid.layers.ceil(similarity_norm), similarity_norm),\
                  similarity_norm], axis=1)
              auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, \
                  stat_neg] = fluid.layers.auc(input=binary_predict,\
                                               label=label, curve='ROC',\
                                               num_thresholds=4096)
              local_sqrerr, local_abserr, local_prob, local_q, local_pos_ins,\
                  local_total_ins = fluid.contrib.layers.ctr_metric_bundle(\
                      similarity_norm, label)

        """
        if scope.find_var(stat_pos_name) is None or \
                scope.find_var(stat_neg_name) is None:
            self.rank0_print("not found auc bucket")
            return [None] * 9
        elif scope.find_var(sqrerr_name) is None:
            self.rank0_print("not found sqrerr_name=%s" % sqrerr_name)
            return [None] * 9
        elif scope.find_var(abserr_name) is None:
            self.rank0_print("not found abserr_name=%s" % abserr_name)
            return [None] * 9
        elif scope.find_var(prob_name) is None:
            self.rank0_print("not found prob_name=%s" % prob_name)
            return [None] * 9
        elif scope.find_var(q_name) is None:
            self.rank0_print("not found q_name=%s" % q_name)
            return [None] * 9
        elif scope.find_var(pos_ins_num_name) is None:
            self.rank0_print("not found pos_ins_num_name=%s" % pos_ins_num_name)
            return [None] * 9
        elif scope.find_var(total_ins_num_name) is None:
            self.rank0_print("not found total_ins_num_name=%s" % \
                             total_ins_num_name)
            return [None] * 9

        # barrier worker to ensure all workers finished training
        fleet._role_maker._barrier_worker()

        # get auc
        auc = self.get_global_auc(scope, stat_pos_name, stat_neg_name)
        pos = np.array(scope.find_var(stat_pos_name).get_tensor())
        # auc pos bucket shape
        old_pos_shape = np.array(pos.shape)
        # reshape to one dim
        pos = pos.reshape(-1)
        global_pos = np.copy(pos) * 0
        # mpi allreduce
        fleet._role_maker._node_type_comm.Allreduce(pos, global_pos)
        # reshape to its original shape
        global_pos = global_pos.reshape(old_pos_shape)
        # auc neg bucket
        neg = np.array(scope.find_var(stat_neg_name).get_tensor())
        old_neg_shape = np.array(neg.shape)
        neg = neg.reshape(-1)
        global_neg = np.copy(neg) * 0
        fleet._role_maker._node_type_comm.Allreduce(neg, global_neg)
        global_neg = global_neg.reshape(old_neg_shape)

        num_bucket = len(global_pos[0])

        def get_metric(name):
            metric = np.array(scope.find_var(name).get_tensor())
            old_metric_shape = np.array(metric.shape)
            metric = metric.reshape(-1)
            global_metric = np.copy(metric) * 0
            fleet._role_maker._node_type_comm.Allreduce(metric, global_metric)
            global_metric = global_metric.reshape(old_metric_shape)
            return global_metric[0]

        global_sqrerr = get_metric(sqrerr_name)
        global_abserr = get_metric(abserr_name)
        global_prob = get_metric(prob_name)
        global_q_value = get_metric(q_name)
        # note: get ins_num from auc bucket is not actual value,
        # so get it from metric op
        pos_ins_num = get_metric(pos_ins_num_name)
        total_ins_num = get_metric(total_ins_num_name)
        neg_ins_num = total_ins_num - pos_ins_num

        mae = global_abserr / total_ins_num
        rmse = math.sqrt(global_sqrerr / total_ins_num)
1387
        return_actual_ctr = pos_ins_num / total_ins_num
1388 1389 1390 1391
        predicted_ctr = global_prob / total_ins_num
        mean_predict_qvalue = global_q_value / total_ins_num
        copc = 0.0
        if abs(predicted_ctr > 1e-6):
1392
            copc = return_actual_ctr / predicted_ctr
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

        # calculate bucket error
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
        for i in xrange(num_bucket):
            click = global_pos[0][i]
            show = global_pos[0][i] + global_neg[0][i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
            relative_error = \
                           math.sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum))
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0

        return [
1439 1440
            auc, bucket_error, mae, rmse, return_actual_ctr, predicted_ctr,
            copc, mean_predict_qvalue, int(total_ins_num)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        ]

    def print_global_metrics(self,
                             scope=fluid.global_scope(),
                             stat_pos_name="_generated_var_2",
                             stat_neg_name="_generated_var_3",
                             sqrerr_name="sqrerr",
                             abserr_name="abserr",
                             prob_name="prob",
                             q_name="q",
                             pos_ins_num_name="pos",
                             total_ins_num_name="total",
                             print_prefix=""):
        """
        print global metrics, including auc, bucket_error, mae, rmse,
        actual_ctr, predicted_ctr, copc, mean_predict_qvalue, total_ins_num.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos_name(str): name of auc pos bucket Variable
            stat_neg_name(str): name of auc neg bucket Variable
            sqrerr_name(str): name of sqrerr Variable
            abserr_name(str): name of abserr Variable
            prob_name(str): name of prob Variable
            q_name(str): name of q Variable
            pos_ins_num_name(str): name of pos ins num Variable
            total_ins_num_name(str): name of total ins num Variable
            print_prefix(str): print prefix

        Examples:
            .. code-block:: python

              from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
              fleet_util = FleetUtil()
              fleet_util.print_global_metrics(myscope,
                                              stat_pos.nane,
                                              stat_neg.name,
                                              local_sqrerr.name,
                                              local_abserr.name,
                                              local_prob.name,
                                              local_q.name,
                                              local_pos_ins.name,
                                              local_total_ins.name)

              # below is part of model
              label = fluid.layers.data(name="click", shape=[-1, 1],\
                  dtype="int64", lod_level=0, append_batch_size=False)
              emb = my_slot_net(slots, label) # emb can be fc layer of size 1
              similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(\
                  emb, min=-15.0, max=15.0), name="similarity_norm")\
              binary_predict = fluid.layers.concat(input=[\
                  fluid.layers.elementwise_sub(\
                      fluid.layers.ceil(similarity_norm), similarity_norm),\
                  similarity_norm], axis=1)
              auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, \
                  stat_neg] = fluid.layers.auc(input=binary_predict,\
                                               label=label, curve='ROC',\
                                               num_thresholds=4096)
              local_sqrerr, local_abserr, local_prob, local_q, local_pos_ins, \
                  local_total_ins = fluid.contrib.layers.ctr_metric_bundle(\
                      similarity_norm, label)

        """
        if scope.find_var(stat_pos_name) is None or \
                scope.find_var(stat_neg_name) is None:
            self.rank0_print("not found auc bucket")
            return
        elif scope.find_var(sqrerr_name) is None:
            self.rank0_print("not found sqrerr_name=%s" % sqrerr_name)
            return
        elif scope.find_var(abserr_name) is None:
            self.rank0_print("not found abserr_name=%s" % abserr_name)
            return
        elif scope.find_var(prob_name) is None:
            self.rank0_print("not found prob_name=%s" % prob_name)
            return
        elif scope.find_var(q_name) is None:
            self.rank0_print("not found q_name=%s" % q_name)
            return
        elif scope.find_var(pos_ins_num_name) is None:
            self.rank0_print("not found pos_ins_num_name=%s" % pos_ins_num_name)
            return
        elif scope.find_var(total_ins_num_name) is None:
            self.rank0_print("not found total_ins_num_name=%s" % \
                             total_ins_num_name)
            return

        auc, bucket_error, mae, rmse, actual_ctr, predicted_ctr, copc,\
            mean_predict_qvalue, total_ins_num = self.get_global_metrics(\
            scope, stat_pos_name, stat_neg_name, sqrerr_name, abserr_name,\
            prob_name, q_name, pos_ins_num_name, total_ins_num_name)
        self.rank0_print("%s global AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f "
                         "RMSE=%.6f Actural_CTR=%.6f Predicted_CTR=%.6f "
                         "COPC=%.6f MEAN Q_VALUE=%.6f Ins number=%s" %
                         (print_prefix, auc, bucket_error, mae, rmse,
                          actual_ctr, predicted_ctr, copc, mean_predict_qvalue,
                          total_ins_num))