tensor.cc 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/lib/utils/allocator.h"
24 25
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
26
#include "paddle/phi/core/dense_tensor.h"
27
#include "paddle/phi/core/enforce.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
31 32 33
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
34

35 36 37 38
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
namespace detail {
static Place GetCorrectPlaceByPlaceType(const Place &place_type) {
  auto alloc_type = place_type.GetType();
  switch (alloc_type) {
    case AllocationType::CPU:
      return place_type;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    case AllocationType::GPU:
      return phi::Place(AllocationType::GPU,
                        phi::backends::gpu::GetCurrentDeviceId());
#endif
    default:
      PADDLE_THROW(phi::errors::Unavailable(
          "The PlaceType is a legacy design, only supports CPU and GPU, "
          "and will not support other place types in the future."));
  }
}
}  // namespace detail
57 58 59 60 61

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

62
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
63
    : impl_(std::move(tensor_impl)) {
64 65 66
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
67 68
}

69
Tensor::Tensor(const Place &place) {
70 71 72 73 74 75 76 77
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
78 79 80 81 82 83 84 85
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
86 87 88 89 90 91 92 93
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
94 95 96 97 98 99 100
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
101

102
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
103 104
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
105

106 107 108 109 110 111
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

112
phi::DDim Tensor::dims() const { return impl_->dims(); }
113 114

std::vector<int64_t> Tensor::shape() const {
115 116 117 118 119
  auto dims = impl_->dims();
  if (dims.size() == 1 && dims.at(0) == 0) {
    return {};
  }
  return phi::vectorize<int64_t>(dims);
120 121 122
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
123 124 125 126 127 128 129 130 131
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
132
  if (is_dense_tensor()) {
133
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
134
  } else {
135
    PADDLE_THROW(phi::errors::Unimplemented(
136 137
        "Only support reshape operation on DenseTensor now."));
  }
138 139
}

140
DataType Tensor::dtype() const { return impl_->dtype(); }
141

142
DataType Tensor::type() const { return impl_->dtype(); }
143 144 145

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
146
bool Tensor::is_dense_tensor() const {
147
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
148
}
149
bool Tensor::is_selected_rows() const {
150
  return phi::SelectedRows::classof(impl_.get());
151
}
152 153 154 155 156 157
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
158 159
/* Part 3: Device and Backend methods */

160 161 162 163 164 165 166
Place Tensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::place()."));
  return impl_->place();
167 168
}

C
Chen Weihang 已提交
169
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
170

C
Chen Weihang 已提交
171
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
172

173
bool Tensor::is_gpu_pinned() const {
C
Chen Weihang 已提交
174
  return paddle::platform::is_cuda_pinned_place(place());
175 176
}

177 178 179 180
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
181 182 183 184 185 186 187 188 189 190
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
191
  if (is_dense_tensor()) {
192 193
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
194 195 196 197
  }
  return nullptr;
}

198 199 200 201 202 203 204 205
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
206 207 208 209 210 211
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
212 213

template <typename T>
214
T *Tensor::mutable_data(const Place &place) {
215 216 217 218 219 220 221 222 223 224
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
225
  if (is_dense_tensor()) {
226
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
227 228
  }
  return nullptr;
229 230
}

231 232 233 234 235 236 237 238
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
239
template PADDLE_API phi::dtype::complex<float>
240
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
241
template PADDLE_API phi::dtype::complex<double>
242
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
243
template PADDLE_API phi::dtype::float16 *
244
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
245 246 247

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
248
  if (is_dense_tensor()) {
249 250 251
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
252 253 254 255
  }
  return nullptr;
}

256 257 258 259 260 261 262 263
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
264 265 266 267 268 269 270 271
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
272 273 274

template <typename T>
T *Tensor::data() {
275
  if (is_dense_tensor()) {
276 277 278
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
279 280 281
        ->mutable_value()
        ->data<T>();
  }
282 283 284
  return nullptr;
}

285 286 287 288 289 290 291 292
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
293 294 295 296 297
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
298

299
// TODO(chenweihang): replace slice impl by API
300
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
301
  if (is_dense_tensor()) {
302 303
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
304
            *(static_cast<phi::DenseTensor *>(impl_.get())),
305 306 307
            begin_idx,
            end_idx))));
  } else {
308
    PADDLE_THROW(phi::errors::Unimplemented(
309
        "Only support slice operation on DenseTensor now."));
310
  }
311 312
}

313
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
314

315
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
316 317 318
  impl_ = impl;
}

319 320 321 322
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

323 324 325 326 327 328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

329
/* Part 5: Status utils methods */
330 331 332

bool Tensor::defined() const { return impl_ != nullptr; }

333
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
334 335

bool Tensor::is_initialized() const {
336 337 338 339
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
340
  return defined() && impl_->initialized();
341 342 343 344
}

void Tensor::reset() { impl_.reset(); }

345
/* Part 6: Operator overloading */
346 347 348 349

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
350
  name_ = x.name_;
351 352 353 354 355 356
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
357
  name_ = std::move(x.name_);
358 359 360 361 362 363 364
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

365 366 367 368 369
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

370 371 372 373 374
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

375 376 377
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
378
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
379 380 381 382 383 384 385 386 387 388
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
389
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
390 391 392 393 394 395 396 397
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

398 399 400 401
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
402
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
403 404 405 406 407
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

408 409
}  // namespace experimental
}  // namespace paddle