recv_op.cc 6.9 KB
Newer Older
武毅 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/data_type.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
T
typhoonzero 已提交
27
#include "paddle/framework/proto_desc.h"
武毅 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "paddle/operators/detail/send_recv_impl.h"
#include "paddle/operators/detail/simple_block_queue.h"

namespace paddle {
namespace operators {

void RunServer(Server **rpc_server,
               std::shared_ptr<detail::SendRecvServerImpl> service,
               const std::string &server_address) {
  ServerBuilder builder;
  builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
  builder.RegisterService(service.get());
  std::unique_ptr<Server> server(builder.BuildAndStart());
  *rpc_server = server.get();
T
typhoonzero 已提交
42
  LOG(INFO) << "Server listening on " << server_address;
武毅 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  server->Wait();
}

class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      rpc_service_.reset(new detail::SendRecvServerImpl());
      std::string endpoint = Attr<std::string>("endpoint");
      server_thread_.reset(
          new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint));
    }
  }

  virtual ~RecvOp() {
    rpc_server_->Shutdown();
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
65
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
T
typhoonzero 已提交
66
    if (grads_counter_.find(varname) == grads_counter_.end()) {
T
done  
typhoonzero 已提交
67 68 69 70 71 72 73 74
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
75
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
76
           const platform::Place &dev_place) const override {
T
typhoonzero 已提交
77
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
78
    framework::Scope &recv_scope = scope.NewScope();
T
typhoonzero 已提交
79
    rpc_service_->SetScope(&recv_scope);
T
typhoonzero 已提交
80 81
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
82
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
83
    size_t param_count = param_list.size();
T
typhoonzero 已提交
84
    rpc_service_->Reset();
T
typhoonzero 已提交
85 86
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
    while (true) {
T
done  
typhoonzero 已提交
87 88 89
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
90 91 92 93 94 95 96
        // blocking get one var from client.
        const detail::TensorWithName &v = rpc_service_->Get();
        auto grad_var_name = v.first;
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
T
typhoonzero 已提交
97 98
        } else {
          LOG(ERROR) << "grad have no paired param found!";
T
typhoonzero 已提交
99
        }
T
typhoonzero 已提交
100 101
        VLOG(3) << "recved grad: " << grad_var_name
                << " updating param: " << param_var_name;
T
typhoonzero 已提交
102 103 104
        auto *merged_grad = recv_scope.FindVar(grad_var_name);
        if (merged_grad == nullptr) {
          // create output of merged var.
T
typhoonzero 已提交
105 106
          auto merged_var = recv_scope.Var(grad_var_name);
          merged_var->GetMutable<framework::LoDTensor>();
T
typhoonzero 已提交
107 108
        }

T
done  
typhoonzero 已提交
109
        if (trainer_count > 1) {
T
typhoonzero 已提交
110
          grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
T
done  
typhoonzero 已提交
111 112
        }

T
typhoonzero 已提交
113 114 115
        auto *var = recv_scope.Var(grad_var_name);
        auto *tensor = var->GetMutable<framework::LoDTensor>();
        // FIXME(typhoonzero): do not copy
D
dzhwinter 已提交
116 117 118
        platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
        auto &dev_ctx = *pool.Borrow(place);
        framework::CopyFrom(v.second, place, dev_ctx, tensor);
T
typhoonzero 已提交
119
      }
T
typhoonzero 已提交
120
      rpc_service_->Reset();
武毅 已提交
121

T
typhoonzero 已提交
122
      std::string program_str = Attr<std::string>("OptimizeProgram");
T
typhoonzero 已提交
123
      framework::proto::ProgramDesc program_desc;
T
typhoonzero 已提交
124
      program_desc.ParseFromString(program_str);
T
typhoonzero 已提交
125
      framework::ProgramDesc program(program_desc);
D
dzhwinter 已提交
126
      framework::Executor executor(place);
T
typhoonzero 已提交
127 128 129 130 131 132 133
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
T
typhoonzero 已提交
134
      rpc_service_->Done();
T
typhoonzero 已提交
135
      grads_counter_.clear();
T
typhoonzero 已提交
136
    }  // while(true)
武毅 已提交
137 138 139 140 141 142 143 144 145
  }

 protected:
  // grpc server instance to track status and gracefully shutdown.
  // borrow an pointer from server thread.
  Server *rpc_server_{nullptr};
  // grpc send/recv service implement to register.
  std::shared_ptr<detail::SendRecvServerImpl> rpc_service_;
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
146
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
147 148 149 150
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
151
  RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
武毅 已提交
152
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
153
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
154 155 156 157 158 159 160 161 162 163
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
164 165
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
166 167
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
Y
Yancey1989 已提交
168 169
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
typhoonzero 已提交
170 171
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
Y
Yancey1989 已提交
172 173
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
done  
typhoonzero 已提交
174 175 176
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
177 178 179 180 181 182 183 184 185
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);