fc_mkldnn_op.cc 20.7 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <mkldnn/include/mkldnn_types.h>
#include <memory>
M
mozga-intel 已提交
17
#include "paddle/fluid/framework/tensor.h"
18
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
19 20
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
21
#include "paddle/fluid/platform/variant.h"
M
mozga-intel 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
using mkldnn::memory;
using mkldnn::inner_product_forward;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::prop_kind;
M
mozga-intel 已提交
39

M
Michał Gallus 已提交
40
template <typename T_in, typename T_w, typename T_out>
41
class FCPrimitiveFactory {
M
mozga-intel 已提交
42
 public:
43 44
  explicit FCPrimitiveFactory(const mkldnn::engine& engine) : engine_(engine) {}

A
Adam 已提交
45 46 47
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
                          const ExecutionContext& ctx) {
48
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
49 50
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
51 52
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
53 54
      this->Execute();
      return;
55
    }
M
Michał Gallus 已提交
56 57
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    input_ = CreateMemory<T_in>(src_desc, input);
M
mozga-intel 已提交
58

M
Michał Gallus 已提交
59 60 61
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product
    // primitive, transpose the weights to be in row-major format
62 63 64 65
    weights_ = TransposeWeights(weights);
    if (src_desc.data.ndims == 4) {
      weights_ = CreateFourDimWeightsMemory(input, weights);
    }
M
Michał Gallus 已提交
66 67
    // If int8 data type is desired, weights are quantized to signed int8
    QuantizeWeights(ctx);
68

M
Michał Gallus 已提交
69 70 71 72
    // Choose MKLDNNMemoryFormat::any so that MKL-DNN can determine itself what
    // is the best format for output during the creation of inner product
    // primitive descriptor
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
M
mozga-intel 已提交
73

74
    fc_ = CreateFcPrimitive(*input_, *weights_, dst_desc, bias, output, ctx);
A
Adam 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    this->Execute();
  }

  void Execute() {
    mkldnn::stream astream(engine_);
    if (bias_) {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_BIAS, *bias_},
                             {MKLDNN_ARG_DST, *output_}});
    } else {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_DST, *output_}});
    }
    astream.wait();
M
mozga-intel 已提交
91 92
  }

93 94 95
 private:
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
96 97 98 99 100
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
101
    if (out->format() == MKLDNNMemoryFormat::undef) {
A
Adam 已提交
102
      auto output_format = platform::GetMKLDNNFormat(*output_);
103
      out->set_format((MKLDNNMemoryFormat)output_format);
104
    }
M
mozga-intel 已提交
105 106
  }

M
Michał Gallus 已提交
107
  // Choose weight memory format based on input memory format
108 109
  MKLDNNMemoryFormat MatchWeightFormat(MKLDNNMemoryFormat fmt) {
    using format = MKLDNNMemoryFormat;
110 111
    switch (fmt) {
      case format::nChw16c:
A
Adam 已提交
112
        return format::aBcd16b;
113
      case format::nChw8c:
A
Adam 已提交
114
        return format::aBcd8b;
115 116
      case format::nchw:
        return format::oihw;
M
Michał Gallus 已提交
117 118
      case format::nhwc:
        return format::hwio;
119
      default:
A
Adam 已提交
120
        return format::undef;
121
    }
M
mozga-intel 已提交
122 123
  }

M
Michał Gallus 已提交
124
  // Convert data from one data format to another
125
  mkldnn::memory Reorder(const memory::desc& src_desc,
A
Adam 已提交
126 127 128
                         const memory::desc& dst_desc, void* src_data) {
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);
M
mozga-intel 已提交
129

130
    auto reorder = mkldnn::reorder(src_mem, dst_mem);
A
Adam 已提交
131 132 133
    mkldnn::stream astream(engine_);
    reorder.execute(astream, src_mem, dst_mem);
    astream.wait();
M
mozga-intel 已提交
134

135
    return dst_mem;
M
mozga-intel 已提交
136 137
  }

M
Michał Gallus 已提交
138 139
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
A
Adam 已提交
140
  mkldnn::memory Reorder(const memory& src_mem, const memory::desc& dst_md,
M
Michał Gallus 已提交
141
                         const std::vector<float>& scale_data) {
A
Adam 已提交
142
    mkldnn::memory dst_mem = mkldnn::memory(dst_md, engine_);
M
Michał Gallus 已提交
143 144 145 146 147 148 149 150 151
    mkldnn::primitive_attr attributes;
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
A
Adam 已提交
152
    auto reorder = mkldnn::reorder({src_mem, dst_mem, attributes});
M
Michał Gallus 已提交
153

A
Adam 已提交
154 155 156 157
    mkldnn::stream astream(engine_);
    reorder.execute(astream,
                    {{MKLDNN_ARG_FROM, src_mem}, {MKLDNN_ARG_TO, dst_mem}});
    astream.wait();
M
Michał Gallus 已提交
158 159 160 161 162

    return dst_mem;
  }

  template <typename T>
A
Adam 已提交
163 164
  static mkldnn::memory::desc CreateMemDescriptor(
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
165 166
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
167 168
  }

M
Michał Gallus 已提交
169
  template <typename T>
170
  static mkldnn::memory::desc CreateMemDescriptor(const Tensor* tensor,
171
                                                  MKLDNNMemoryFormat format) {
A
Adam 已提交
172
    auto dims = framework::vectorize(tensor->dims());
M
Michał Gallus 已提交
173
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
174 175
  }

M
Michał Gallus 已提交
176
  template <typename T>
177 178
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc,
                              const Tensor* tensor) {
A
Adam 已提交
179
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
180 181
  }

A
Adam 已提交
182 183
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc, void* data) {
    return memory(desc, engine_, data);
M
mozga-intel 已提交
184 185
  }

M
Michał Gallus 已提交
186
  // Transpose weights through MKL-DNN's reorder from io to oi format.
187
  mkldnn::memory TransposeWeights(const Tensor* weights) {
A
Adam 已提交
188
    auto dims = framework::vectorize(weights->dims());
189
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
190 191
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
A
Adam 已提交
192 193
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  }

  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
  std::vector<float> ComputeOutputShiftScale(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    // If the output will be in floats, we don't multiply by scale_out.
    auto scale_out_data = ctx.Attr<bool>("force_fp32_output")
                              ? 1.0f
                              : ctx.Attr<float>("Scale_out");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_in_data * scale_weights_data[i]);
    }

    return output_shift_scale;
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

  void QuantizeWeights(const ExecutionContext& ctx) {
A
Adam 已提交
251
    auto quantized_desc = weights_->get_desc();
M
Michał Gallus 已提交
252 253
    quantized_desc.data.data_type =
        (mkldnn_data_type_t)platform::MKLDNNGetDataType<T_w>();
A
Adam 已提交
254
    weights_ = Reorder(*weights_, quantized_desc,
M
Michał Gallus 已提交
255 256 257 258 259 260
                       ctx.Attr<std::vector<float>>("Scale_weights"));
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
A
Adam 已提交
261
    bias_ = Reorder(*bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
  mkldnn::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    mkldnn::primitive_attr attributes;
    mkldnn::post_ops post_operations;

    auto output_shift_scale = ComputeOutputShiftScale(ctx);
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }

    attributes.set_post_ops(post_operations);
    return attributes;
283
  }
M
mozga-intel 已提交
284

285 286 287 288 289
  inner_product_forward CreateFcPrimitive(const memory& src_memory,
                                          const memory& weights_memory,
                                          const memory::desc& dst_desc,
                                          const Tensor* bias, Tensor* output,
                                          const ExecutionContext& ctx) {
M
Michał Gallus 已提交
290 291
    // Acquire descriptors needed for creation of inner_product primitive
    // descriptor
A
Adam 已提交
292 293
    const auto weights_desc = weights_memory.get_desc();
    const auto src_desc = src_memory.get_desc();
M
Michał Gallus 已提交
294 295 296 297
    // Based on provided attributes, create attributes used by MKL-DNN to
    // enable fused post-op activations such as 'relu'
    const auto attrs = CreatePostOps(ctx);
    // If bias exists, create inner_product primitive with or without bias
298
    if (bias) {
M
Michał Gallus 已提交
299 300 301 302
      auto bias_desc = CreateMemDescriptor<float>(bias, bias->format());
      bias_ = CreateMemory<float>(bias_desc, bias);
      // Create inner_product descriptor. At this point the format of output
      // is determined.
303
      auto fc_prim_desc =
M
Michał Gallus 已提交
304 305 306
          CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
      // If int8 is desired, quantize bias into 32-bit signed int
      QuantizeBias(fc_prim_desc, ctx);
307

M
Michał Gallus 已提交
308 309
      // Based on format determined by inner_product, create output in desired
      // memory format
310 311
      output_ = CreateDstMemory(fc_prim_desc, ctx, output);

M
Michał Gallus 已提交
312
      // Return MKL-DNN primitive ready to be fed into pipeline and executed
A
Adam 已提交
313
      return inner_product_forward(fc_prim_desc);
314
    } else {
M
Michał Gallus 已提交
315 316
      auto fc_prim_desc =
          CreateFcPrimDesc(src_desc, weights_desc, dst_desc, attrs);
317
      output_ = CreateDstMemory(fc_prim_desc, ctx, output);
A
Adam 已提交
318
      return inner_product_forward(fc_prim_desc);
319 320
    }
  }
M
mozga-intel 已提交
321

322 323 324 325
  mkldnn::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const mkldnn::memory::desc& input_desc,
      const mkldnn::memory::desc& weights_desc,
      const mkldnn::memory::desc& bias_desc,
M
Michał Gallus 已提交
326 327
      const mkldnn::memory::desc& dst_desc,
      const mkldnn::primitive_attr& attrs) {
328 329 330
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
331

M
Michał Gallus 已提交
332
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
333
  }
M
mozga-intel 已提交
334

335 336 337
  mkldnn::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const mkldnn::memory::desc& input_desc,
      const mkldnn::memory::desc& weights_desc,
M
Michał Gallus 已提交
338 339
      const mkldnn::memory::desc& dst_desc,
      const mkldnn::primitive_attr& attrs) {
340 341
    auto fc_desc = inner_product_forward::desc(prop_kind::forward, input_desc,
                                               weights_desc, dst_desc);
M
mozga-intel 已提交
342

M
Michał Gallus 已提交
343
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
344
  }
M
mozga-intel 已提交
345

M
Michał Gallus 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
  // Since MKL-DNN requires the number of input dimensions to be
  // equal to the number of weight dimensions, we have to convert
  // weights to 4D memory if input is 4D. It also requires that
  // all dimensions of weights and inputs agree, with an exception
  // for the batch size and number of output channels (the first dim).
  // In order to perform that we have to prepare the memory descriptor
  // by hand, as MKL-DNN's reorder does not support conversion
  // from one dimensionality to another. Hence, we set
  // the first dimension of weights to resemble number of outputs
  // and then we use the sizes of number of input channels as well
  // as image width and height for latter dimensions. Then we create
  // memories, find a format corresponding with input format and
  // perform a converion.
359 360
  mkldnn::memory CreateFourDimWeightsMemory(const Tensor* input,
                                            const Tensor* weights) {
A
Adam 已提交
361 362
    auto input_dims = framework::vectorize(input->dims());
    auto weight_dims = framework::vectorize(weights->dims());
363
    auto dims = {weight_dims[1], input_dims[1], input_dims[2], input_dims[3]};
M
mozga-intel 已提交
364

365
    auto dst_format = MatchWeightFormat(input->format());
M
Michał Gallus 已提交
366 367
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
    auto dst_desc = CreateMemDescriptor<float>(dims, dst_format);
M
mozga-intel 已提交
368

369 370
    return Reorder(src_desc, dst_desc, weights_->get_data_handle());
  }
M
mozga-intel 已提交
371

M
Michał Gallus 已提交
372 373
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
374 375 376
  mkldnn::memory CreateDstMemory(
      const mkldnn::inner_product_forward::primitive_desc& fc_prim_desc,
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
377 378
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
379 380
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
381
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
A
Adam 已提交
382 383
    output->set_format(platform::GetMKLDNNFormat(dst_mem));
    return dst_mem;
384
  }
M
mozga-intel 已提交
385

386 387
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
388
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
389 390 391 392
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
393
    std::vector<int64_t> output_dims;
394 395
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
L
luotao1 已提交
396 397
    output->Resize(framework::make_ddim(output_dims));
    output->set_lod(input->lod());
398
  }
L
luotao1 已提交
399

400 401 402 403 404 405 406 407
 private:
  const mkldnn::engine& engine_;
  boost::optional<memory> bias_;
  boost::optional<memory> input_;
  boost::optional<memory> output_;
  boost::optional<memory> weights_;
  boost::optional<inner_product_forward> fc_;
};
M
mozga-intel 已提交
408

M
Michał Gallus 已提交
409 410 411 412 413 414 415 416 417
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
                    const ExecutionContext& ctx, const Tensor* input,
                    const Tensor* weights,
                    const mkldnn::engine& mkldnn_engine) {
418
  const std::string key = platform::CreateKey(
M
Michał Gallus 已提交
419
      platform::ThreadIDasStr(), input->format(),
H
hong 已提交
420
      framework::vectorize<int>(weights->dims()), ctx.OutputName("Out"));
421 422

  auto prim_creator =
M
Michał Gallus 已提交
423 424
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
425
  if (prim_creator == nullptr) {
M
Michał Gallus 已提交
426 427
    prim_creator =
        std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(mkldnn_engine);
428
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
429 430
  }

431 432
  return prim_creator;
}
M
mozga-intel 已提交
433

M
Michał Gallus 已提交
434 435 436
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
A
Adam 已提交
437 438 439 440 441
static void ExecuteFc(const MKLDNNDeviceContext& dev_ctx,
                      const ExecutionContext& ctx, const LoDTensor* input,
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
                      const mkldnn::engine& mkldnn_engine, bool fuse_relu,
                      bool force_fp32_output) {
M
Michał Gallus 已提交
442 443 444
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
  if (!is_int8 || force_fp32_output) {
A
Adam 已提交
445 446
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, ctx, input, w, mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
447
  } else if (fuse_relu) {
A
Adam 已提交
448 449 450
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, ctx, input, w,
                                            mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
451
  } else {
A
Adam 已提交
452 453 454
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, ctx, input, w,
                                           mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
455 456 457 458 459
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
460 461
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
462 463 464
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
M
mozga-intel 已提交
465 466 467
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

468 469
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
470
    auto bias = ctx.Input<Tensor>("Bias");
471
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
472

M
Michał Gallus 已提交
473 474 475
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

A
Adam 已提交
476 477
    ExecuteFc<T_in, T_w>(dev_ctx, ctx, input, w, bias, output, mkldnn_engine,
                         fuse_relu, force_fp32_output);
M
mozga-intel 已提交
478

479
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
480 481 482 483 484
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);