conv_mkldnn_op.cc 41.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

A
Adam 已提交
32 33
inline void GetWeightsTz(std::vector<int64_t>& weights_tz,  // NOLINT
                         int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
134
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
135 136 137 138
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
139
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
A
Adam 已提交
159
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
160 161 162 163
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165

A
Adam 已提交
166 167 168 169 170 171 172 173 174
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

175 176 177
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
178
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
179
    int groups = ctx.Attr<int>("groups");
180
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
181
    bool is_conv3d = strides.size() == 3U;
182

183 184 185 186 187 188
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
189
    auto ksize = framework::vectorize(filter_data_dims);
190 191 192 193

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
194 195
    std::vector<primitive> pipeline;

196
    PADDLE_ENFORCE(
197 198 199 200
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
201 202 203 204 205
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

A
Adam 已提交
206 207
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());
208
    int g = std::max(groups, 1);
A
Adam 已提交
209

210
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
211 212

    auto dst_tz = paddle::framework::vectorize(output->dims());
213

214
    // Get unique name for storing MKLDNN primitives
215
    const std::string key = platform::CreateKey(
H
hong 已提交
216
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
217

218
    auto src_format = input->format();
219
    MKLDNNMemoryFormat weights_format =
220 221 222 223 224 225
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
226 227 228 229 230

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
231 232 233 234
    // TODO(jczaja): This is workaround to make grad op UT's numerical
    // gradient computation proper as this op is called directly without
    // fetch op following it , so numercial grad is computed (in python)
    // using block formats which will give wrong results
235 236
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
237 238
        is_test ? MKLDNNMemoryFormat::any
                : platform::data_format_to_memory_format(data_format);
239

240
    weights_format = MKLDNNMemoryFormat::any;
241
    // Check the format for user's special output
242
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
243 244 245 246
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
247 248
    }

249
    auto src_md = platform::MKLDNNMemDesc(
250
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
251
    auto weights_md = platform::MKLDNNMemDesc(
252
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
A
Adam 已提交
253
    std::vector<int64_t> bias_tz;
254
    auto dst_md = platform::MKLDNNMemDesc(
255
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
256

257 258
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

259
    // create a conv primitive descriptor and save it for usage in backward
260
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
261 262
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
263
    if (bias) {
A
Adam 已提交
264
      bias_tz = paddle::framework::vectorize(bias->dims());
265
      auto bias_md = platform::MKLDNNMemDesc(
266
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
267
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
268
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
269
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
270
          fwd_prop_kind);
271
    } else {
272 273
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
274 275
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
276
    }
277

278
    // create mkldnn memory from input tensors (data/weights)
279 280
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
281
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
282
        user_weights_md, to_void_cast<T>(filter_data));
283

284 285 286 287 288
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
289

290
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
291

292
    if (fuse_residual_conn) {
293 294
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
295

296 297
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
298 299 300 301
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
302

303
      if (residual_param->format() != handler.GetDstFormat()) {
304 305
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
306
        auto residual_data_tz =
A
Adam 已提交
307
            paddle::framework::vectorize(residual_param->dims());
308 309 310 311 312
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
313
        user_residual_memory_p = handler.AcquireResidualDataMemory(
314
            user_residual_md, to_void_cast<T>(residual_param_data));
315 316 317

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
318 319
      } else {
        output->ShareDataWith(*residual_param);
320 321 322
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
323
      }
324
    } else {
325 326
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
327 328
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
329
    }
330

A
Adam 已提交
331 332 333
    auto conv_p = handler.AcquireConvolution();

    mkldnn::stream astream(mkldnn_engine);
334 335 336
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
337
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
A
Adam 已提交
338
      auto user_bias_memory_p =
339 340
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

A
Adam 已提交
341
      auto bias_memory_p =
342
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
A
Adam 已提交
343 344 345 346 347 348

      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_BIAS, *bias_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});

349
    } else {
A
Adam 已提交
350 351 352
      conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DST, *dst_memory_p}});
353
    }
A
Adam 已提交
354
    astream.wait();
355

356 357
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
358
  }
359
  template <typename T_out>
360 361 362 363 364 365 366 367 368 369
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

370 371
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
372
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
373 374 375 376 377 378 379 380 381
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

382
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
383
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
384 385
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
386

387 388
    const T* input_data = input->data<T>();

A
Adam 已提交
389
    auto src_tz = paddle::framework::vectorize(input->dims());
390

X
xiaolil1 已提交
391 392
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
393

L
lidanqing 已提交
394
    std::string key = platform::CreateKey(
H
hong 已提交
395
        src_tz, src_dt, ctx.InputName("Input") + ctx.InputName("Filter"));
396

397 398
    const std::string key_conv_pd = key + "@conv_pd";
    bool need_s8_to_u8 = false;
399 400 401
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
402
    std::shared_ptr<mkldnn::memory> dst_memory_p;
403
    std::vector<primitive> pipeline;
404
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
405 406 407 408 409 410 411 412 413
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
414
    }
415

416 417 418
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
A
Adam 已提交
419 420
    auto weights_key = key + key_tid + "@weights_mem_p";
    auto bias_key = key + key_tid + "@bias_mem_p";
421
    auto user_src_key = key + key_tid + "@user_src_mem_p";
A
Adam 已提交
422
    auto user_residual_key = key + key_tid + "@user_residual_data_mem_p";
423 424 425 426 427 428
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

A
Adam 已提交
429 430
    mkldnn::stream astream(mkldnn_engine);

431
    if (conv_p == nullptr || !is_test) {
432 433 434 435 436 437 438 439
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

      PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Filter tensor");
A
Adam 已提交
440
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                        "Wrong format set for Filter tensor");

      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
        PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                          "Wrong layout set for Bias tensor");
A
Adam 已提交
459
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
460 461 462 463 464 465
                          "Wrong format set for Bias tensor");

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          "Bias must only have 1 dimension, i.e. X");
      }

A
Adam 已提交
466 467 468 469 470 471 472 473 474 475
      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

476 477
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
478 479 480 481 482 483

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
                        "int8 does not support conv3d currently");

484 485 486 487 488 489
      auto input_dims = input->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
490
      auto ksize = framework::vectorize(filter_data_dims);
491 492 493 494

      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

495
      int groups = ctx.Attr<int>("groups");
A
Adam 已提交
496
      auto weights_tz = paddle::framework::vectorize(filter->dims());
497 498 499
      int g = std::max(groups, 1);

      GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
500
      auto dst_tz = paddle::framework::vectorize(output->dims());
501 502 503 504 505 506 507 508

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
537

538 539 540 541 542 543 544 545 546 547
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
548
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
549

A
Adam 已提交
550
      std::vector<int64_t> bias_tz;
551 552 553 554 555 556 557 558 559 560 561 562 563

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
564

565
      if (bias) {
A
Adam 已提交
566
        bias_tz = paddle::framework::vectorize(bias->dims());
567 568 569 570 571 572 573 574 575 576 577 578
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
A
Adam 已提交
606
              paddle::framework::vectorize(residual_param->dims());
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
622

623 624
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
A
Adam 已提交
625
      conv_p = handler->AcquireConvolution();
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
A
Adam 已提交
646 647 648 649
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
650
      } else {
A
Adam 已提交
651 652 653
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
654 655
      }
    } else {
A
Adam 已提交
656
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
657 658 659 660 661 662 663
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
A
Adam 已提交
664 665 666
        src_memory_reorder_p->execute(astream, *user_src_memory_p,
                                      *src_memory_p);
        astream.wait();
667 668 669
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
A
Adam 已提交
670 671
      auto weights_memory_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(weights_key));
672 673 674 675 676 677 678 679 680
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
681

682 683
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
L
lidanqing 已提交
684
        output->ShareDataWith(*residual_param);
685 686 687
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
688
      }
689
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
690

A
Adam 已提交
691
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
692 693
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
A
Adam 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        auto user_residual_data_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_residual_key));
        residual_reorder_p->execute(astream, *user_residual_data_p,
                                    *dst_memory_p);
        astream.wait();
      }

      auto bias_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(bias_key));

      if (bias_memory_p) {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_BIAS, *bias_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
      } else {
        conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                  {MKLDNN_ARG_DST, *dst_memory_p}});
713 714
      }
    }
A
Adam 已提交
715
    astream.wait();
716
    if (need_s8_to_u8) {
X
xiaolil1 已提交
717 718
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
719 720 721
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
722 723 724
};

template <typename T>
725
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
726 727 728 729 730
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

731 732
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
733 734 735 736 737 738 739 740 741
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

742 743
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
744
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
745
                      "Wrong format set for Input tensor");
746

747 748
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
A
Adam 已提交
749
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
750 751 752 753
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
A
Adam 已提交
754
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::undef,
755 756 757 758
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
759 760
        "is_test attribute should be set to False in training phase.");

761 762
    if (!input_grad && !filter_grad) return;

A
Adam 已提交
763 764 765 766 767 768 769 770 771
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));

772
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
A
Adam 已提交
773

774
    int groups = ctx.Attr<int>("groups");
775

776
    bool is_conv3d = strides.size() == 3U;
777 778 779 780 781 782
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

783 784 785 786 787 788
    auto input_dims = input->dims();
    auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
    auto filter_dims = filter->dims();
    auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

A
Adam 已提交
789
    auto ksize = framework::vectorize(filter_data_dims);
790 791 792 793

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

A
Adam 已提交
794 795 796
    auto src_tz = paddle::framework::vectorize(input->dims());
    auto weights_tz = paddle::framework::vectorize(filter->dims());

797
    int g = std::max(groups, 1);
798
    GetWeightsTz(weights_tz, g, is_conv3d);
A
Adam 已提交
799 800
    auto dst_tz = paddle::framework::vectorize(output_grad->dims());

801
    auto src_format = input->format();
802
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
803
        GetWeightsFormat(filter->format(), g, is_conv3d);
804

805
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
806
    // as well as attributes of primitive to be created
807
    // This name will be used as key when saving info into device context
808
    const std::string key = platform::CreateKey(
H
hong 已提交
809
        src_tz, ctx.InputName("Input") + ctx.InputName("Filter"));
810 811

    const std::string key_conv_pd = key + "@conv_pd";
812
    std::vector<primitive> pipeline;
813

814 815
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
816
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
817
    auto user_weights_md = platform::MKLDNNMemDesc(
818
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
819 820
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
821 822 823 824 825

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
826 827 828 829 830 831 832 833 834

    // TODO(jczaja): Once GRAD NHWC is working then format 'any'
    // should be used exclusively. But till forward pass enforce
    // NCHW for training we need to have NCHW here as well
    // to avoid performance degradation in relu_grad and pool2d_grad
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

835
    weights_format = MKLDNNMemoryFormat::any;
836 837 838 839 840 841 842
    // Check the format for user's special output
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
    }
843

844
    auto src_md = platform::MKLDNNMemDesc(
845
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
846
    auto diff_src_md = platform::MKLDNNMemDesc(
847
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
848
    auto weights_md = platform::MKLDNNMemDesc(
849
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
850
    auto diff_weights_md = platform::MKLDNNMemDesc(
851
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
852
    auto diff_dst_md = platform::MKLDNNMemDesc(
853
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
854
    // Retrieve conv_pd from device context
855 856 857
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
858 859
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
                      "Fail to find conv_pd in device context");
860

861 862
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

863 864
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
A
Adam 已提交
865 866 867
        mkldnn::algorithm::convolution_direct, src_md, diff_weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

868 869 870 871 872 873
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
A
Adam 已提交
874 875 876
        mkldnn::algorithm::convolution_direct, diff_src_md, weights_md,
        diff_dst_md, strides, mkldnn_paddings[0], mkldnn_paddings[1]);

877 878 879 880
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
881 882 883
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
884 885 886 887 888 889 890 891

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
A
Adam 已提交
892
    mkldnn::stream astream(mkldnn_engine);
893
    if (filter_grad) {
894 895
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
896

897 898 899 900
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

901
      const size_t size = handler.GetDiffWeightsMemorySize();
902
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
903

904 905 906 907
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

A
Adam 已提交
908
      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights();
909

A
Adam 已提交
910 911 912 913 914 915
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
          astream, {{MKLDNN_ARG_SRC, *src_memory_p},
                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4filter_p},
                    {MKLDNN_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
      astream.wait();
916

917 918
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
919 920
    }
    if (input_grad) {
921 922 923 924 925 926 927
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

928
      const size_t size = handler.GetDiffSourceMemorySize();
929
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
930

931 932 933
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

A
Adam 已提交
934
      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData();
935

A
Adam 已提交
936 937 938 939 940
      conv_bwd_data_p->execute(astream,
                               {{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_4data_p},
                                {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
      astream.wait();
941

942 943
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
944
    }
X
xiaolil1 已提交
945
  }
946
};
947

948 949 950 951 952
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
953 954 955
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
956
                                    ops::ConvMKLDNNOpKernel<float, float>);
957 958 959

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
960
                                    ops::kConvMKLDNNINT8,
961
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
962 963 964

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
965
                                    ops::kConvMKLDNNINT8,
966
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
967 968 969 970 971

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
972 973 974 975

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
976
                                    ops::ConvMKLDNNOpKernel<float, float>);
977 978 979 980 981

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);