eig_op.h 13.8 KB
Newer Older
L
Lijunhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>
#include <algorithm>
#include <complex>
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/for_range.h"
23
#include "paddle/phi/kernels/complex_kernel.h"
24
#include "paddle/phi/kernels/funcs/complex_functors.h"
25
#include "paddle/phi/kernels/funcs/diag_functor.h"
26 27
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
28 29 30 31 32 33
#include "paddle/phi/kernels/funcs/slice.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/math_kernel.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"

L
Lijunhui 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#define EPSILON 1e-6

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

inline int BatchCount(const Tensor& matrix) {
  int count = 1;
  int num_dims = matrix.dims().size();
  for (int i = 0; i < num_dims - 2; ++i) {
    count *= matrix.dims()[i];
  }
  return count;
}

inline int MatrixStride(const Tensor& matrix) {
  framework::DDim dims_list = matrix.dims();
  int num_dims = dims_list.size();
  return dims_list[num_dims - 1] * dims_list[num_dims - 2];
}

// Transpose two axis of a Tensor
template <typename DeviceContext, typename T>
void TransposeTwoAxis(const Tensor& input, Tensor* transposed_input,
                      const int axis1, const int axis2,
                      const framework::ExecutionContext& context) {
  std::vector<int> permute(input.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis1] = axis2;
  permute[axis2] = axis1;

  transposed_input->mutable_data<T>(input.dims(), context.GetPlace());
  auto& dev_ctx = context.template device_context<platform::CPUDeviceContext>();

  TransCompute<DeviceContext, T>(input.dims().size(), dev_ctx, input,
                                 transposed_input, permute);
}

// Apply eig to a batch of matrices, values, vectors and (intermidiate
// tensor) info are overritten
template <typename T>
void LapackEig(Tensor* input, Tensor* values, Tensor* vectors, int info,
               const framework::ExecutionContext& context) {
  char jobvl = 'N';
  char jobvr = 'V';  // only right eigenvectors are computed
  int num_dims = input->dims().size();
  int order = input->dims()[num_dims - 1];

  T* input_data = input->data<T>();
  int lda = std::max<int>(1, order);
  T* values_data = values->mutable_data<T>(context.GetPlace());
  T* lvector_data = nullptr;
  int ldvl = 1;
  T* rvector_data = vectors->mutable_data<T>(context.GetPlace());
  int ldvr = lda;
  int lwork = -1;

  int batch_count = BatchCount(*input);
  int matrix_stride = MatrixStride(*input);
  int values_stride = values->dims()[values->dims().size() - 1];

  Tensor rwork;
97
  phi::dtype::Real<T>* rwork_data = nullptr;
L
Lijunhui 已提交
98

99
  rwork.Resize(phi::make_ddim({lda * 2}));
100
  rwork_data = rwork.mutable_data<phi::dtype::Real<T>>(context.GetPlace());
L
Lijunhui 已提交
101 102 103

  // call lapackEig once to compute the size of work;
  T computed_work_size;
104
  phi::funcs::lapackEig<T, phi::dtype::Real<T>>(
L
Lijunhui 已提交
105 106 107
      jobvl, jobvr, order, input_data, lda, values_data, lvector_data, ldvl,
      rvector_data, ldvr, &computed_work_size, lwork, rwork_data, &info);

108
  lwork = std::max<int>(
109
      1, static_cast<int>(phi::dtype::Real<T>(computed_work_size)));
L
Lijunhui 已提交
110
  Tensor work;
111
  work.Resize(phi::make_ddim({lwork}));
L
Lijunhui 已提交
112 113 114 115 116 117 118
  T* work_data = work.mutable_data<T>(context.GetPlace());

  for (auto i = 0; i < batch_count; ++i) {
    T* current_matrix = &input_data[i * matrix_stride];
    T* current_values = &values_data[i * values_stride];
    T* current_rvectors = &rvector_data[i * matrix_stride];

119
    phi::funcs::lapackEig<T, phi::dtype::Real<T>>(
L
Lijunhui 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        jobvl, jobvr, order, current_matrix, lda, current_values, lvector_data,
        ldvl, current_rvectors, ldvr, work_data, lwork, rwork_data, &info);
    PADDLE_ENFORCE_EQ(
        info, 0,
        platform::errors::PreconditionNotMet(
            "current info is not 0, computation failed. "
            "= 0:  successful exit."
            "< 0:  if INFO = -i, the i-th argument had an illegal value."
            "> 0:  if INFO = i, the QR algorithm failed to compute all the "
            "eigenvalues, and no eigenvectors have been computed; "
            "elements i+1:N of WR and WI contain eigenvalues which "
            "have converged."));
  }
}

template <typename DeviceContext, typename T>
void ApplyEigKernel(const Tensor& input, Tensor* values, Tensor* vectors,
                    const framework::ExecutionContext& context) {
  Tensor input_column_major;
  Tensor vectors_row_major;
  int num_dims = input.dims().size();

  // transfer to column-major memory layout i.e. make_ddim from tranposed_input:
  // [batch,row,col]->[batch,col,row]
  TransposeTwoAxis<DeviceContext, T>(input, &input_column_major, num_dims - 1,
                                     num_dims - 2, context);
  // make sure 'vectors_row_major' holds memory before passed to LapackEig()
  vectors_row_major.Resize(input.dims());
  int info = 0;
  LapackEig<T>(&input_column_major, values, &vectors_row_major, info, context);

  // transfer column-major layout back
  // vectors_row_major: column-major layout
  // vector: original layout
  TransposeTwoAxis<DeviceContext, T>(vectors_row_major, vectors, num_dims - 1,
                                     num_dims - 2, context);
}

template <typename T, typename Tout>
void ConstructComplexVectors(Tensor* c_vectors, const Tensor& c_values,
                             const Tensor& r_vectors,
                             const framework::ExecutionContext& ctx,
                             int batch_count, int order) {
  int matrix_stride = MatrixStride(r_vectors);

  auto* c_vectors_data = c_vectors->mutable_data<Tout>(ctx.GetPlace());
  auto* c_values_data = c_values.data<Tout>();
  auto* r_v_data = r_vectors.data<T>();

  for (int b = 0; b < batch_count; b++) {
    auto* vecs = &r_v_data[b * matrix_stride];
    auto* res = &c_vectors_data[b * matrix_stride];
    auto* vals = &c_values_data[b * order];

    for (int j = 0; j < order; j++) {
      if (vals[j].imag < EPSILON) {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i], 0);
        }
      } else {
        for (int i = 0; i < order; i++) {
          res[j * order + i] = platform::complex<T>(vecs[j * order + i],
                                                    vecs[(j + 1) * order + i]);
          res[(j + 1) * order + i] = platform::complex<T>(
              vecs[j * order + i], -vecs[(j + 1) * order + i]);
        }
        j++;
      }
    }
  }
}

template <typename DeviceContext, typename T, typename Tout>
class EigKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out_values = context.Output<Tensor>("Eigenvalues");
    auto* out_vectors = context.Output<Tensor>("Eigenvectors");

200
    if (!framework::IsComplexType(framework::TransToProtoVarType(x->dtype()))) {
L
Lijunhui 已提交
201 202 203 204 205 206 207 208 209 210
      out_values->mutable_data<Tout>(context.GetPlace());
      out_vectors->mutable_data<Tout>(context.GetPlace());

      int batch_count = BatchCount(*x);
      int order = x->dims()[x->dims().size() - 1];

      Tensor real_values;
      Tensor real_vectors;
      // double the size of real_values, the first half stores the real part,
      // the next half stores the imag part
211
      std::vector<int> origin_dim = phi::vectorize<int>(out_values->dims());
L
Lijunhui 已提交
212 213 214
      int last_item = origin_dim.back();
      origin_dim.pop_back();
      origin_dim.push_back(last_item * 2);
215
      framework::DDim big_dim = phi::make_ddim(origin_dim);
L
Lijunhui 已提交
216

217
      real_values.mutable_data<phi::dtype::Real<T>>(big_dim,
218
                                                    context.GetPlace());
219
      real_vectors.mutable_data<phi::dtype::Real<T>>(x->dims(),
220
                                                     context.GetPlace());
L
Lijunhui 已提交
221

222
      ApplyEigKernel<DeviceContext, phi::dtype::Real<T>>(
223
          *x, &real_values, &real_vectors, context);
224 225 226 227 228

      auto& orig_dev_ctx = context.template device_context<DeviceContext>();
      auto& dev_ctx = static_cast<
          const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
          orig_dev_ctx);
L
Lijunhui 已提交
229 230

      // 1. extract real part & imag part from real_values
231 232 233 234
      Tensor real_part =
          phi::funcs::Slice<T>(dev_ctx, real_values, {-1}, {0}, {order});
      Tensor imag_part = phi::funcs::Slice<T>(dev_ctx, real_values, {-1},
                                              {order}, {order * 2});
L
Lijunhui 已提交
235 236

      // 2. construct complex values
237 238
      auto* real_part_data = real_part.data<phi::dtype::Real<T>>();
      auto* imag_part_data = imag_part.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
239 240 241
      int out_values_numel = out_values->numel();
      platform::ForRange<DeviceContext> for_range(
          context.template device_context<DeviceContext>(), out_values_numel);
242
      phi::funcs::RealImagToComplexFunctor<Tout> functor(
L
Lijunhui 已提交
243 244 245 246 247
          real_part_data, imag_part_data,
          out_values->mutable_data<Tout>(context.GetPlace()), out_values_numel);
      for_range(functor);

      // 3. construct complex vectors
248 249
      Tensor real_vector_trans =
          phi::TransposeLast2Dim<T>(dev_ctx, real_vectors);
L
Lijunhui 已提交
250 251
      Tensor out_vectors_trans;
      out_vectors_trans.mutable_data<Tout>(x->dims(), context.GetPlace());
252
      ConstructComplexVectors<phi::dtype::Real<T>, Tout>(
L
Lijunhui 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266
          &out_vectors_trans, *out_values, real_vector_trans, context,
          batch_count, order);
      TransposeTwoAxis<DeviceContext, Tout>(out_vectors_trans, out_vectors,
                                            x->dims().size() - 1,
                                            x->dims().size() - 2, context);
    } else {
      out_values->mutable_data<T>(context.GetPlace());
      out_vectors->mutable_data<T>(context.GetPlace());

      ApplyEigKernel<DeviceContext, T>(*x, out_values, out_vectors, context);
    }
  }
};

267
template <typename DeviceContext, typename T>
L
Lijunhui 已提交
268 269
void ComputeBackwardForComplexInput(
    const Tensor& V, const Tensor& L, const Tensor& gL, const Tensor& gV,
270
    T* x_grad_data, int batch_count, int order,
L
Lijunhui 已提交
271
    const framework::ExecutionContext& context) {
272 273 274 275 276 277 278 279 280 281 282 283 284 285
  auto& orig_dev_ctx = context.template device_context<DeviceContext>();
  auto& dev_ctx = static_cast<
      const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
      orig_dev_ctx);

  Tensor trans_v = phi::TransposeLast2Dim<T>(dev_ctx, V);
  Tensor Vh = phi::Conj<T>(dev_ctx, trans_v);
  Tensor Lconj = phi::Conj<T>(dev_ctx, L);
  Tensor Econj = phi::Subtract<T>(dev_ctx, phi::funcs::Unsqueeze(Lconj, -2),
                                  phi::funcs::Unsqueeze(Lconj, -1));
  Tensor VhgV = phi::Matmul<T>(dev_ctx, Vh, gV);
  Tensor diag_real = phi::Real<T>(dev_ctx, VhgV);
  Tensor diag_res = phi::funcs::BatchDiag<T>(dev_ctx, diag_real, batch_count);
  Tensor diag_unsqueezed = phi::funcs::Unsqueeze(diag_res, -2);
L
Lijunhui 已提交
286 287 288 289

  // turn diag_unsqueezed into complex
  auto numel = diag_unsqueezed.numel();
  Tensor diag_unsqueezed_complex;
290 291
  auto* data_diag_un = diag_unsqueezed.data<phi::dtype::Real<T>>();
  auto* data_diag_un_com = diag_unsqueezed_complex.mutable_data<T>(
L
Lijunhui 已提交
292
      diag_unsqueezed.dims(), context.GetPlace(),
293 294 295 296 297
      static_cast<size_t>(numel * sizeof(T)));

  platform::ForRange<DeviceContext> for_range(orig_dev_ctx, numel);
  phi::funcs::RealToComplexFunctor<T> functor(data_diag_un, data_diag_un_com,
                                              numel);
L
Lijunhui 已提交
298 299
  for_range(functor);
  // real tensor multiply complex tensor in broadcast manner
300 301 302
  Tensor res1 = phi::Multiply<T>(dev_ctx, V, diag_unsqueezed_complex);
  Tensor res2 = phi::Matmul<T>(dev_ctx, Vh, res1);
  Tensor result = phi::Subtract<T>(dev_ctx, VhgV, res2);
L
Lijunhui 已提交
303

304 305 306 307 308
  result.mutable_data<T>(V.dims(), context.GetPlace());
  result = phi::Divide<T>(dev_ctx, result, Econj);
  result =
      phi::funcs::DiagFill<T, T>(dev_ctx, order, order, order, 0, gL, result);
  Tensor rhs = phi::Matmul<T>(dev_ctx, result, Vh);
L
Lijunhui 已提交
309 310 311 312 313 314 315 316

  // solve linear system
  // solve(Vh, rhs, out, m, k)
  // Vh: matrix with shape [m,m]
  // rhs: rhs with shape [m,k]
  // x_grad: out
  int m = Vh.dims()[Vh.dims().size() - 1];
  int k = rhs.dims()[rhs.dims().size() - 1];
317 318 319 320
  auto* matrix_data = Vh.data<T>();
  auto* rhs_data = rhs.data<T>();
  math::SolveLinearSystem<T>(matrix_data, rhs_data, x_grad_data, m, k,
                             batch_count);
L
Lijunhui 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
}

template <typename DeviceContext, typename T, typename Tout>
class EigGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& L = *context.Input<Tensor>("Eigenvalues");
    auto& V = *context.Input<Tensor>("Eigenvectors");
    auto& gL = *context.Input<Tensor>(framework::GradVarName("Eigenvalues"));
    auto& gV = *context.Input<Tensor>(framework::GradVarName("Eigenvectors"));

    auto& x_grad = *context.Output<Tensor>(framework::GradVarName("X"));
    auto* x_grad_data = x_grad.mutable_data<Tout>(context.GetPlace());

    auto& dims = V.dims();
    framework::DDim dim_origin = dims;
    int num_dims = dim_origin.size();
    int batch_count = BatchCount(V);
    const int order = dim_origin[num_dims - 1];

    ComputeBackwardForComplexInput<DeviceContext, Tout>(
        V, L, gL, gV, x_grad_data, batch_count, order, context);
  }
};

}  // namespace operators
}  // namespace paddle