line_search.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .utils import _value_and_gradient
import paddle


def cubic_interpolation_(x1, f1, g1, x2, f2, g2):
    r"""Cubic interpolation between (x1, f1, g1) and (x2, f2, g2).
        Use two points and their gradient to determine a cubic function and get the minimun point
        between them in the cubic curve.
        
    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp59: formula 3.59

    Args:
        x1, f1, g1: point1's position, value and gradient.
        x2, f2, g2: point2's position, value and gradient.
    Returns:
        min_pos: the minimun point between the specified points in the cubic curve.
    """
    xmin, xmax = paddle.static.nn.cond(x1 <= x2, lambda: (x1, x2),
                                       lambda: (x2, x1))
    d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
    d2_square = d1**2 - g1 * g2

    def true_func1():
        d2 = d2_square.sqrt()

        def true_fn2():
            return x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))

        def false_fn2():
            return x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))

        pred = paddle.less_equal(x=x1, y=x2)
        min_pos = paddle.static.nn.cond(pred, true_fn2, false_fn2)

        return paddle.minimum(paddle.maximum(min_pos, xmin), xmax)

    def false_func1():
        return (xmin + xmax) / 2.

    min_pos = paddle.static.nn.cond(d2_square >= 0., true_func1, false_func1)
    return min_pos


def strong_wolfe(f,
                 xk,
                 pk,
                 max_iters=20,
                 tolerance_change=1e-8,
                 initial_step_length=1.0,
                 c1=1e-4,
                 c2=0.9,
                 alpha_max=10,
                 dtype='float32'):
    r"""Implements of line search algorithm that satisfies the strong Wolfe conditions using double zoom.
    
    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp60: Algorithm 3.5 (Line Search Algorithm).
    
    Args:
        f: the objective function to minimize. ``f`` accepts a multivariate input and returns a scalar.
        xk (Tensor): the starting point of the iterates.
        pk (Tensor): search direction.
        max_iters (Scalar): the maximum number of iterations.
        tolerance_grad (Scalar): terminates if the gradient norm is smaller than
            this. Currently gradient norm uses inf norm.
        tolerance_change (Scalar): terminates if the change of function value/position/parameter between 
            two iterations is smaller than this value.
        initial_step_length (Scalar): step length used in first iteration.
        c1 (Scalar): parameter for sufficient decrease condition.
        c2 (Scalar): parameter for curvature condition.
        alpha_max (float): max step length.
        dtype ('float32' | 'float64'): the datatype to be used.
    
    Returns:
        num_func_calls (float): number of objective function called in line search process.
        a_star(Tensor): optimal step length, or 0. if the line search algorithm did not converge.
        phi_star (Tensor): phi at a_star.
        derphi_star (Tensor): derivative of phi at a_star.

    Following summarizes the essentials of the strong Wolfe line search algorithm.
    Some notations used in the description:
    
        - `f` denotes the objective function.
        - `phi` is a function of step size alpha, restricting `f` on a line.
        
            phi = f(xk + a * pk),
            where xk is the position of k'th iterate, pk is the line search direction(decent direction), 
            and a is the step size.
        - a : substitute of alpha
        - a1 is a of last iteration, which is alpha_(i-1).
        - a2 is a of current iteration, which is alpha_i.
        - a_lo is a in left position when calls zoom, which is alpha_low.
        - a_hi is a in right position when calls zoom, which is alpha_high.
    
    Line Search Algorithm:
        repeat
            Compute phi(a2) and derphi(a2).
            1. If phi(a2) > phi(0) + c_1 * a2 * phi'(0) or [phi(a2) >= phi(a1) and i > 1], 
                a_star= zoom(a1, a2) and stop;

            2. If |phi'(a2)| <= -c_2 * phi'(0), 
                a_star= a2 and stop;

            3. If phi'(a2) >= 0,
                a_star= zoom(a2, a1) and stop;

            a1 = a2
            a2 = min(2 * a2, a2)
            i = i + 1
        end(repeat)
    
    zoom(a_lo, a_hi) Algorithm: 
        repeat
            aj = cubic_interpolation(a_lo, a_hi)
            Compute phi(aj) and derphi(aj).
            1. If phi(aj) > phi(0) + c_1 * aj * phi'(0) or phi(aj) >= phi(a_lo),
                then a_hi <- aj;
            2.
                2.1. If |phi'(aj)| <= -c_2 * phi'(0), then a_star= a2 and stop;

                2.2. If phi'(aj) * (a2 - a1) >= 0, then a_hi = a_lo

                a_lo = aj;
        end(repeat)
    """

    def phi_and_derphi(a):
        r"""Compute function value and derivative of phi at a.
            phi = f(xk + a * pk)
            phi'(a) = f'(xk + a * pk) * pk
        """
        phi_value, f_grad = _value_and_gradient(f, xk + a * pk)
        phi_grad = paddle.dot(f_grad, pk)
        # return f_grad to be used in bfgs/l-bfgs to compute yk to avoid computint repeatly.
        return phi_value, f_grad, phi_grad

    def zoom(a_lo, phi_lo, derphi_lo, derf_lo, a_hi, phi_hi, derphi_hi, phi_0,
             derphi_0):
        # find the exact a from the bracket [a_lo, a_hi]
        max_zoom_iters = max_iters
        j = paddle.full(shape=[1], fill_value=0, dtype='int64')
        done_zoom = paddle.full(shape=[1], fill_value=False, dtype='bool')

        def cond_zoom(j, done_zoom, a_lo, phi_lo, derphi_lo, derf_lo, a_hi,
                      phi_hi, derphi_hi):
            pred = paddle.abs(a_hi - a_lo) < tolerance_change
            paddle.assign(done_zoom | pred, done_zoom)
            return (j < max_zoom_iters) & ~done_zoom

        def body_zoom(j, done_zoom, a_lo, phi_lo, derphi_lo, derf_lo, a_hi,
                      phi_hi, derphi_hi):
            aj = cubic_interpolation_(a_lo, phi_lo, derphi_lo, a_hi, phi_hi,
                                      derphi_hi)  # 21
            min_change = 0.1 * paddle.abs(a_hi - a_lo)
            pred = paddle.minimum(
                paddle.abs(aj - a_lo), paddle.abs(aj - a_hi)) < min_change
            aj = paddle.static.nn.cond(pred, lambda: 0.5 * (a_lo + a_hi),
                                       lambda: aj)

            phi_j, derf_j, derphi_j = phi_and_derphi(aj)

            def true_fn():
                # use assing to modify the variable in-place
                paddle.assign(aj, a_hi)
                paddle.assign(phi_j, phi_hi)
                paddle.assign(derphi_j, derphi_hi)

            def false_fn(a_lo, done_zoom):
                pred3 = (paddle.abs(derphi_j) <= -c2 * derphi_0)
                paddle.assign(pred3, done_zoom)

                def true_fn():
                    paddle.assign(a_lo, a_hi)
                    paddle.assign(phi_lo, phi_hi)
                    paddle.assign(derphi_lo, derphi_hi)

                pred4 = ~done_zoom & (derphi_j * (a_hi - a_lo) >= 0)
                paddle.static.nn.cond(pred4, true_fn, None)

                paddle.assign(aj, a_lo)
                paddle.assign(phi_j, phi_lo)
                paddle.assign(derphi_j, derphi_lo)
                paddle.assign(derf_j, derf_lo)

            pred2 = (phi_j > phi_0 + c1 * aj * derphi_0) | (phi_j >= phi_lo)
            paddle.static.nn.cond(pred2, true_fn,
                                  lambda: false_fn(a_lo, done_zoom))
            j = paddle.static.nn.cond(done_zoom, lambda: j, lambda: j + 1)
            return [
                j, done_zoom, a_lo, phi_lo, derphi_lo, derf_lo, a_hi, phi_hi,
                derphi_hi
            ]

        paddle.static.nn.while_loop(
            cond=cond_zoom,
            body=body_zoom,
            loop_vars=[
                j, done_zoom, a_lo, phi_lo, derphi_lo, derf_lo, a_hi, phi_hi,
                derphi_hi
            ])
        # j is the number of object function called in zoom.
        return j

    alpha_max = paddle.full(shape=[1], fill_value=alpha_max, dtype=dtype)

    a1 = paddle.full(shape=[1], fill_value=0., dtype=dtype)
    a2 = paddle.full(shape=[1], fill_value=initial_step_length, dtype=dtype)

    phi_1, derf_1, derphi_1 = phi_and_derphi(a1)
    # use assign to cut off binding between two variables
    phi_0 = paddle.assign(phi_1)
    derphi_0 = paddle.assign(derphi_1)
    ls_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')

    # If not found the a_star, will return alpha=0 and f(xk), derf(xk)
    a_star = paddle.full(shape=[1], fill_value=0, dtype=dtype)
    phi_star = paddle.assign(phi_1)
    derf_star = paddle.assign(derf_1)

    i = paddle.full(shape=[1], fill_value=0, dtype='int64')
    done = paddle.full(shape=[1], fill_value=False, dtype='bool')

    def cond(i, ls_func_calls, a1, a2, phi_1, derf_1, done):
        return (i < max_iters) & ~done

    def body(i, ls_func_calls, a1, a2, phi_1, derf_1, done):
        phi_2, derf_2, derphi_2 = phi_and_derphi(a2)
        paddle.assign(ls_func_calls + 1, ls_func_calls)
        paddle.assign(done | paddle.any(paddle.isinf(phi_2)), done)

        def true_fn1():
            j = zoom(a1, phi_1, derphi_1, derf_1, a2, phi_2, derphi_2, phi_0,
                     derphi_0)
            paddle.assign(a1, a_star)
            paddle.assign(phi_1, phi_star)
            paddle.assign(derf_1, derf_star)
            paddle.assign(ls_func_calls + j, ls_func_calls)

        pred1 = ~done & ((phi_2 > phi_0 + c1 * a2 * derphi_0) | (
            (phi_2 >= phi_0) & (i > 1)))
        paddle.assign(done | pred1, done)
        paddle.static.nn.cond(pred1, true_fn1, None)

        def true_fn2():
            paddle.assign(a2, a_star)
            paddle.assign(phi_2, phi_star)
            paddle.assign(derf_2, derf_star)

        pred2 = ~done & (paddle.abs(derphi_2) <= -c2 * derphi_0)
        paddle.assign(done | pred2, done)
        paddle.static.nn.cond(pred2, true_fn2, None)

        def true_fn3():
            j = zoom(a2, phi_2, derphi_2, derf_2, a1, phi_1, derphi_1, phi_0,
                     derphi_0)
            paddle.assign(a2, a_star)
            paddle.assign(phi_2, phi_star)
            paddle.assign(derf_2, derf_star)
            paddle.assign(ls_func_calls + j, ls_func_calls)

        pred3 = ~done & (derphi_2 >= 0)
        paddle.assign(done | pred3, done)
        paddle.static.nn.cond(pred3, true_fn3, None)

        def false_fn():
            paddle.assign(a2, a1)
            paddle.assign(phi_2, phi_1)
            paddle.assign(derf_2, derf_1)
            paddle.assign(paddle.minimum(2 * a2, alpha_max), a2)
            paddle.assign(i + 1, i)

        paddle.static.nn.cond(done, None, false_fn)
        return [i, ls_func_calls, a1, a2, phi_1, derf_1, done]

    paddle.static.nn.while_loop(
        cond=cond,
        body=body,
        loop_vars=[i, ls_func_calls, a1, a2, phi_1, derf_1, done])

    return a_star, phi_star, derf_star, ls_func_calls