vision.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
17
from paddle.framework import _non_static_mode
R
ruri 已提交
18

19 20 21 22 23
from ...device import get_cudnn_version, is_compiled_with_rocm
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
from ...static import Variable

24 25
__all__ = []

26 27 28

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
29
    It generates a grid of (x,y) or (x,y,z) coordinates using the parameters of
30 31 32 33 34
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
35
        theta (Tensor) - A tensor with shape [N, 2, 3] or [N, 3, 4]. It contains a batch of affine transform parameters.
36
                           The data type can be float32 or float64.
37
        out_shape (Tensor | list | tuple): Type can be a 1-D Tensor, list, or tuple. It is used to represent the shape of the output in an affine transformation, in the format ``[N, C, H, W]`` or ``[N, C, D, H, W]``.
38 39 40 41
                                           When the format is ``[N, C, H, W]``, it represents the batch size, number of channels, height and width. When the format is ``[N, C, D, H, W]``, it represents the batch size, number of channels, depth, height and width.
                                           The data type must be int32.
        align_corners(bool, optional): if True, aligns the centers of the 4 (4D) or 8 (5D) corner pixels of the input and output tensors, and preserves the value of the corner pixels. Default: True
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
42 43

    Returns:
44
        Tensor, A Tensor with shape [batch_size, H, W, 2] or [batch, D, H, W, 3] while ('D')'H', 'W' are the (depth)height, width of feature map in affine transformation. The data type is the same as `theta`.
45 46 47 48 49 50 51 52

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            # theta shape = [1, 2, 3]
53 54
            theta = paddle.to_tensor([[[-0.7, -0.4, 0.3],
                                       [ 0.6,  0.5, 1.5]]], dtype="float32")
55
            y_t = F.affine_grid(
56
                    theta,
57 58
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
59
            print(y_t)
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
75

76 77 78 79 80
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
81 82
    if theta.shape[1] == 3:
        use_cudnn = False
Z
zhiboniu 已提交
83
    if is_compiled_with_rocm():
84 85 86
        use_cudnn = (
            False  # ROCM platform do not have MIOPEN kernel for affine_grid
        )
87

88
    if in_dygraph_mode():
89 90 91 92 93
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
94
        theta = theta._use_gpudnn(use_cudnn)
95
        return _C_ops.affine_grid(theta, _out_shape, align_corners)
96
    elif in_dynamic_mode():
97 98 99 100 101 102 103 104 105 106 107 108 109 110
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
        return _legacy_C_ops.affine_grid(
            theta,
            "output_shape",
            _out_shape,
            "align_corners",
            align_corners,
            "use_cudnn",
            use_cudnn,
        )
111

112
    helper = LayerHelper('affine_grid')
113 114 115
    check_variable_and_dtype(
        theta, 'theta', ['float32', 'float64'], 'affine_grid'
    )
116 117 118 119 120
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
121 122 123
        check_variable_and_dtype(
            out_shape, 'out_shape', ['int32'], 'affine_grid'
        )
124 125 126
    else:
        attrs['output_shape'] = out_shape

127 128 129 130 131 132
    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
133
    return out
134 135


136 137 138 139 140 141 142 143
def grid_sample(
    x,
    grid,
    mode='bilinear',
    padding_mode='zeros',
    align_corners=True,
    name=None,
):
144
    """
145
    Sample input X by using bilinear interpolation or
146
    nearest interpolation based on flow field grid, which is usually
147 148 149 150 151
    generated by :code:`affine_grid` . When the input X is 4-D Tensor,
    the grid of shape [N, H, W, 2] is the concatenation of (x, y)
    coordinates with shape [N, H, W] each, where x is indexing the 4th
    dimension (in width dimension) of input data x and y is indexing
    the 3rd dimension (in height dimension), finally results is the
152
    bilinear interpolation or nearest value of 4 nearest corner
153 154 155 156 157 158 159 160
    points. The output tensor shape will be [N, C, H, W]. When the input X
    is 5-D Tensor, the grid of shape [N, D, H, W, 3] is the concatenation
    of (x, y, z) coordinates with shape [N, D, H, W] each, where x is
    indexing the 5th dimension (in width dimension) of input data x, y is
    indexing the 4th dimension (in height dimension) and z is indexing the
    3rd dimension (in depth dimension) finally results is the bilinear
    interpolation or nearest value of 8 nearest cornerpoints. The output
    tensor shape will be [N, C, D, H, W].
161

162 163 164 165 166 167 168 169 170 171 172 173


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
174

175 176 177 178
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

179
    .. code-block:: text
180 181 182 183 184 185 186 187 188 189 190

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

191 192 193 194 195 196 197 198 199 200 201 202 203
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
204

205
        output = wn * d_e * d_s + en * d_w * d_s
206 207
                + ws * d_e * d_n + es * d_w * d_n

208 209
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
210 211
                     [N, C, H, W] or a 5-d tensor with shape [N, C, D, H, W],
                     N is the batch size, C is the channel number,
212
                     D, H and W is the feature depth, height and width.
213
                     The data type is float32 or float64.
214 215
        grid(Tensor): Input grid tensor, which is a 4-d tensor with shape [N, grid_H,
                        grid_W, 2] or a 5-d tensor with shape [N, grid_D, grid_H,
216
                        grid_W, 3]. The data type is float32 or float64.
217 218 219
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
220
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
221 222 223 224 225 226 227
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
228 229

    Returns:
230

231
        Tensor, The shape of output is [N, C, grid_H, grid_W] or [N, C, grid_D, grid_H, grid_W] in which `grid_D` is the depth of grid,
232
                `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.
233

234
    Examples:
235

236
        .. code-block:: python
237

238 239
            import paddle
            import paddle.nn.functional as F
240 241

            # x shape=[1, 1, 3, 3]
242 243 244
            x = paddle.to_tensor([[[[-0.6,  0.8, -0.5],
                                    [-0.5,  0.2,  1.2],
                                    [ 1.4,  0.3, -0.2]]]],dtype='float64')
245
            # grid shape = [1, 3, 4, 2]
246 247 248 249 250 251 252 253 254 255 256 257
            grid = paddle.to_tensor([[[[ 0.2,  0.3],
                                       [-0.4, -0.3],
                                       [-0.9,  0.3],
                                       [-0.9, -0.6]],
                                      [[ 0.4,  0.1],
                                       [ 0.9, -0.8],
                                       [ 0.4,  0.5],
                                       [ 0.5, -0.2]],
                                      [[ 0.1, -0.8],
                                       [-0.3, -1. ],
                                       [ 0.7,  0.4],
                                       [ 0.2,  0.8]]]],dtype='float64')
258 259 260 261 262 263
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
264
            print(y_t)
265

266 267 268 269 270
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
271

272
    _modes = ['bilinear', 'nearest']
273
    _padding_modes = ['zeros', 'reflection', 'border']
274 275
    if mode not in _modes:
        raise ValueError(
276 277 278 279
            "The mode of grid sample function should be in {}, but got: {}".format(
                _modes, mode
            )
        )
280 281
    if padding_mode not in _padding_modes:
        raise ValueError(
282 283 284 285
            "The padding mode of grid sample function should be in {}, but got: {}".format(
                _padding_modes, padding_mode
            )
        )
286 287

    if not isinstance(align_corners, bool):
288 289 290 291 292
        raise ValueError(
            "The align corners should be bool, but got: {}".format(
                align_corners
            )
        )
293 294 295

    cudnn_version = get_cudnn_version()
    use_cudnn = False
296 297 298 299 300 301 302
    if (
        not is_compiled_with_rocm()
        and (cudnn_version is not None)
        and align_corners
        and mode == 'bilinear'
        and padding_mode == 'zeros'
    ):
303
        use_cudnn = True
W
whs 已提交
304 305 306
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
307

308 309 310
    if len(grid.shape) == 5:
        use_cudnn = False

W
Wang Bojun 已提交
311
    if in_dygraph_mode():
312
        return _C_ops.grid_sample(x, grid, mode, padding_mode, align_corners)
W
Wang Bojun 已提交
313
    elif in_dynamic_mode():
314 315 316 317 318 319 320 321 322 323
        attrs = (
            'mode',
            mode,
            'padding_mode',
            padding_mode,
            'align_corners',
            align_corners,
            'use_cudnn',
            use_cudnn,
        )
324
        out = getattr(_legacy_C_ops, 'grid_sampler')(x, grid, *attrs)
325
    else:
326 327
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
328 329 330
        check_variable_and_dtype(
            grid, 'grid', ['float32', 'float64'], 'grid_sample'
        )
331 332 333 334 335
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
336
            'use_cudnn': use_cudnn,
337
        }
338
        out = helper.create_variable_for_type_inference(x.dtype)
339 340 341 342 343 344
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out},
        )
345
    return out
R
ruri 已提交
346 347 348 349 350 351


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
352 353


R
ruri 已提交
354 355 356
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
357
        data_format (str, optional): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
R
ruri 已提交
358
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
359

R
ruri 已提交
360 361
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
362

R
ruri 已提交
363 364
    Examples:
        .. code-block:: python
365

R
ruri 已提交
366 367
            import paddle
            import paddle.nn.functional as F
368 369 370

            x = paddle.randn(shape=[2,9,4,4])
            out_var = F.pixel_shuffle(x, 3)
371 372
            print(out_var.shape)
            # [2, 1, 12, 12]
R
ruri 已提交
373 374 375 376 377
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
378 379
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
380 381
            "But recevie Attr(data_format): {} ".format(data_format)
        )
H
hong 已提交
382
    if in_dygraph_mode():
383
        return _C_ops.pixel_shuffle(x, upscale_factor, data_format)
R
ruri 已提交
384

H
hong 已提交
385
    if _in_legacy_dygraph():
386 387 388
        return _legacy_C_ops.pixel_shuffle(
            x, "upscale_factor", upscale_factor, "data_format", data_format
        )
R
ruri 已提交
389 390

    helper = LayerHelper("pixel_shuffle", **locals())
391
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
392
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
393 394 395 396 397 398
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor, "data_format": data_format},
    )
R
ruri 已提交
399
    return out
400 401


402 403 404 405 406 407 408 409
def pixel_unshuffle(x, downscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel unshuffle operation.
    See more details in :ref:`api_nn_vision_PixelUnshuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        downscale_factor (int): Factor to decrease spatial resolution.
410
        data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
411 412 413 414 415 416 417 418 419 420 421 422
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Reshaped tensor according to the new dimension.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.randn([2, 1, 12, 12])
            out = F.pixel_unshuffle(x, 3)
423 424
            print(out.shape)
            # [2, 9, 4, 4]
425 426 427
    """
    if len(x.shape) != 4:
        raise ValueError(
428 429 430 431
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
432 433 434 435 436 437 438 439

    if not isinstance(downscale_factor, int):
        raise TypeError("Downscale factor must be int type")

    if downscale_factor <= 0:
        raise ValueError("Downscale factor must be positive")

    if data_format not in ["NCHW", "NHWC"]:
440 441
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
442 443
            "But recevie Attr(data_format): {} ".format(data_format)
        )
444 445

    if _non_static_mode():
446 447 448
        return _legacy_C_ops.pixel_unshuffle(
            x, "downscale_factor", downscale_factor, "data_format", data_format
        )
449 450 451 452

    helper = LayerHelper("pixel_unshuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_unshuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
453 454 455 456 457 458 459 460 461
    helper.append_op(
        type="pixel_unshuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={
            "downscale_factor": downscale_factor,
            "data_format": data_format,
        },
    )
462 463 464
    return out


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
def channel_shuffle(x, groups, data_format="NCHW", name=None):
    """
    This API implements channel shuffle operation.
    See more details in :ref:`api_nn_vision_ChannelShuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        groups (int): Number of groups to divide channels in.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Rearranged tensor keeping the original tensor shape.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            y = F.channel_shuffle(x, 3)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """
    if len(x.shape) != 4:
        raise ValueError(
502 503 504 505
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
506 507 508 509 510 511 512 513

    if not isinstance(groups, int):
        raise TypeError("groups must be int type")

    if groups <= 0:
        raise ValueError("groups must be positive")

    if data_format not in ["NCHW", "NHWC"]:
514 515
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
516 517
            "But recevie Attr(data_format): {} ".format(data_format)
        )
518 519

    if _non_static_mode():
520 521 522
        return _legacy_C_ops.channel_shuffle(
            x, "groups", groups, "data_format", data_format
        )
523 524 525 526

    helper = LayerHelper("channel_shuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
527 528 529 530 531 532
    helper.append_op(
        type="channel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"groups": groups, "data_format": data_format},
    )
533
    return out