__init__.py 17.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.fluid import core
17
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
18 19 20 21 22 23 24 25 26

from .streams import Stream  # noqa: F401
from .streams import Event  # noqa: F401

__all__ = [
    'Stream',
    'Event',
    'current_stream',
    'synchronize',
L
Linjie Chen 已提交
27
    'device_count',
28
    'empty_cache',
29 30 31 32
    'max_memory_allocated',
    'max_memory_reserved',
    'memory_allocated',
    'memory_reserved',
33
    'stream_guard',
34
    'get_device_properties',
35 36
    'get_device_name',
    'get_device_capability',
37 38 39 40 41 42 43 44
]


def current_stream(device=None):
    '''
    Return the current CUDA stream by the device.

    Parameters:
45
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device which want to get stream from.
46
        If device is None, the device is the current device. Default: None.
47

48 49
    Returns:
        CUDAStream: the stream to the device.
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s1 = paddle.device.cuda.current_stream()

            s2 = paddle.device.cuda.current_stream(0)

            s3 = paddle.device.cuda.current_stream(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._get_current_stream(device_id)


def synchronize(device=None):
    '''
    Wait for the compute on the given CUDA device to finish.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device.
        If device is None, the device is the current device. Default: None.
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            paddle.device.cuda.synchronize()
            paddle.device.cuda.synchronize(0)
            paddle.device.cuda.synchronize(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._device_synchronize(device_id)
L
Linjie Chen 已提交
109 110 111 112 113


def device_count():
    '''
    Return the number of GPUs available.
114

L
Linjie Chen 已提交
115 116 117 118 119 120 121 122 123 124 125 126
    Returns:
        int: the number of GPUs available.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.cuda.device_count()

    '''

127 128 129 130 131
    num_gpus = (
        core.get_cuda_device_count()
        if hasattr(core, 'get_cuda_device_count')
        else 0
    )
L
Linjie Chen 已提交
132 133

    return num_gpus
134 135 136


def empty_cache():
137
    '''
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    Releases idle cached memory held by the allocator so that those can be used in other GPU
    application and visible in `nvidia-smi`. In most cases you don't need to use this function,
    Paddle does not release the memory back to the OS when you remove Tensors on the GPU,
    Because it keeps gpu memory in a pool so that next allocations can be done much faster.

    Examples:
        .. code-block:: python

            import paddle

            # required: gpu
            paddle.set_device("gpu")
            tensor = paddle.randn([512, 512, 512], "float")
            del tensor
            paddle.device.cuda.empty_cache()
153
    '''
154 155 156

    if core.is_compiled_with_cuda():
        core.cuda_empty_cache()
157 158


159 160 161 162 163
def extract_cuda_device_id(device, op_name):
    '''
    Return the id of the given cuda device. It is just a utility that will not be exposed to users.

    Args:
164
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
165 166 167 168 169 170
            the string name of device like 'gpu:x'.
            Default: None.

    Return:
        int: The id of the given device. If device is None, return the id of current device.
    '''
171
    if device is None:
172 173 174 175 176 177 178 179 180 181 182 183
        return core.get_cuda_current_device_id()

    if isinstance(device, int):
        device_id = device
    elif isinstance(device, core.CUDAPlace):
        device_id = device.get_device_id()
    elif isinstance(device, str):
        if device.startswith('gpu:'):
            device_id = int(device[4:])
        else:
            raise ValueError(
                "The current string {} is not expected. Because {} only support string which is like 'gpu:x'. "
184 185
                "Please input appropriate string again!".format(device, op_name)
            )
186 187 188
    else:
        raise ValueError(
            "The device type {} is not expected. Because {} only support int, str or paddle.CUDAPlace. "
189 190
            "Please input appropriate device again!".format(device, op_name)
        )
191

192 193 194 195 196
    assert (
        device_id >= 0
    ), f"The device id must be not less than 0, but got id = {device_id}."
    assert (
        device_id < device_count()
197 198 199 200 201 202 203 204 205
    ), f"The device id {device_id} exceeds gpu card number {device_count()}"

    return device_id


def max_memory_allocated(device=None):
    '''
    Return the peak size of gpu memory that is allocated to tensor of the given device.

206
    Note:
207
        The size of GPU memory allocated to tensor is 256-byte aligned in Paddle, which may larger than the memory size that tensor actually need.
208 209 210
        For instance, a float32 tensor with shape [1] in GPU will take up 256 bytes memory, even though storing a float32 data requires only 4 bytes.

    Args:
211 212
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            Default: None.

    Return:
        int: The peak size of gpu memory that is allocated to tensor of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated(paddle.CUDAPlace(0))
            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated(0)
            max_memory_allocated_size = paddle.device.cuda.max_memory_allocated("gpu:0")
    '''
    name = "paddle.device.cuda.max_memory_allocated"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
234
    return core.device_memory_stat_peak_value("Allocated", device_id)
235 236 237 238 239 240 241


def max_memory_reserved(device=None):
    '''
    Return the peak size of GPU memory that is held by the allocator of the given device.

    Args:
242 243
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            Default: None.

    Return:
        int: The peak size of GPU memory that is held by the allocator of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved(paddle.CUDAPlace(0))
            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved(0)
            max_memory_reserved_size = paddle.device.cuda.max_memory_reserved("gpu:0")
    '''
    name = "paddle.device.cuda.max_memory_reserved"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
265
    return core.device_memory_stat_peak_value("Reserved", device_id)
266 267 268 269 270 271


def memory_allocated(device=None):
    '''
    Return the current size of gpu memory that is allocated to tensor of the given device.

272
    Note:
273 274
        The size of GPU memory allocated to tensor is 256-byte aligned in Paddle, which may be larger than the memory size that tensor actually need.
        For instance, a float32 tensor with shape [1] in GPU will take up 256 bytes memory, even though storing a float32 data requires only 4 bytes.
275 276

    Args:
277 278
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            Default: None.

    Return:
        int: The current size of gpu memory that is allocated to tensor of the given device, in bytes.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            memory_allocated_size = paddle.device.cuda.memory_allocated(paddle.CUDAPlace(0))
            memory_allocated_size = paddle.device.cuda.memory_allocated(0)
            memory_allocated_size = paddle.device.cuda.memory_allocated("gpu:0")
    '''
    name = "paddle.device.cuda.memory_allocated"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
300
    return core.device_memory_stat_current_value("Allocated", device_id)
301 302 303 304 305 306 307


def memory_reserved(device=None):
    '''
    Return the current size of GPU memory that is held by the allocator of the given device.

    Args:
308 309
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x'. If device is None, the device is the current device.
310 311 312 313 314
            Default: None.

    Return:
        int: The current size of GPU memory that is held by the allocator of the given device, in bytes.

315
    Examples:
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        .. code-block:: python

            # required: gpu
            import paddle

            memory_reserved_size = paddle.device.cuda.memory_reserved(paddle.CUDAPlace(0))
            memory_reserved_size = paddle.device.cuda.memory_reserved(0)
            memory_reserved_size = paddle.device.cuda.memory_reserved("gpu:0")
    '''
    name = "paddle.device.cuda.memory_reserved"
    if not core.is_compiled_with_cuda():
        raise ValueError(
            f"The API {name} is not supported in CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support to call this API."
        )
    device_id = extract_cuda_device_id(device, op_name=name)
331
    return core.device_memory_stat_current_value("Reserved", device_id)
332 333


334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
def _set_current_stream(stream):
    '''
    Set the current stream.

    Parameters:
        stream(paddle.device.cuda.Stream): The selected stream.

    Returns:
        CUDAStream: The previous stream.

    '''

    if not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if id(stream) == id(cur_stream):
        return stream
    return core._set_current_stream(stream)


@signature_safe_contextmanager
def stream_guard(stream):
    '''
    **Notes**:
        **This API only supports dygraph mode currently.**

    A context manager that specifies the current stream context by the given stream.

    Parameters:
S
Siming Dai 已提交
364
        stream(paddle.device.cuda.Stream): the selected stream. If stream is None, just yield.
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s = paddle.device.cuda.Stream()
            data1 = paddle.ones(shape=[20])
            data2 = paddle.ones(shape=[20])
            with paddle.device.cuda.stream_guard(s):
                data3 = data1 + data2

    '''

    if stream is not None and not isinstance(stream, paddle.device.cuda.Stream):
        raise TypeError("stream type should be paddle.device.cuda.Stream")

    cur_stream = current_stream()
    if stream is None or id(stream) == id(cur_stream):
        yield
    else:
        pre_stream = _set_current_stream(stream)
        try:
            yield
        finally:
            stream = _set_current_stream(pre_stream)
392 393 394 395 396 397 398


def get_device_properties(device=None):
    '''
    Return the properties of given device.

    Args:
399 400 401
        device(paddle.CUDAPlace or int or str): The device, the id of the device or
            the string name of device like 'gpu:x' which to get the properties of the
            device from. If device is None, the device is the current device.
402 403 404
            Default: None.

    Returns:
405 406
        _gpuDeviceProperties: The properties of the device which include ASCII string
        identifying device, major compute capability, minor compute capability, global
407
        memory available and the number of multiprocessors on the device.
408 409

    Examples:
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        .. code-block:: python

            # required: gpu

            import paddle
            paddle.device.cuda.get_device_properties()
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(0)
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties('gpu:0')
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

            paddle.device.cuda.get_device_properties(paddle.CUDAPlace(0))
            # _gpuDeviceProperties(name='A100-SXM4-40GB', major=8, minor=0, total_memory=40536MB, multi_processor_count=108)

    '''

    if not core.is_compiled_with_cuda():
        raise ValueError(
            "The API paddle.device.cuda.get_device_properties is not supported in "
            "CPU-only PaddlePaddle. Please reinstall PaddlePaddle with GPU support "
434 435
            "to call this API."
        )
436 437 438 439 440 441 442 443 444 445 446 447 448

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        elif isinstance(device, str):
            if device.startswith('gpu:'):
                device_id = int(device[4:])
            else:
                raise ValueError(
                    "The current string {} is not expected. Because paddle.device."
                    "cuda.get_device_properties only support string which is like 'gpu:x'. "
449 450
                    "Please input appropriate string again!".format(device)
                )
451 452 453 454
        else:
            raise ValueError(
                "The device type {} is not expected. Because paddle.device.cuda."
                "get_device_properties only support int, str or paddle.CUDAPlace. "
455 456
                "Please input appropriate device again!".format(device)
            )
457 458 459 460
    else:
        device_id = -1

    return core.get_device_properties(device_id)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496


def get_device_name(device=None):
    '''
    Return the name of the device which is got from CUDA function `cudaDeviceProp <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0>`_.

    Parameters:
        device(paddle.CUDAPlace|int, optional): The device or the ID of the device. If device is None (default), the device is the current device.

    Returns:
        str: The name of the device.

    Examples:

        .. code-block:: python

            # required: gpu

            import paddle

            paddle.device.cuda.get_device_name()

            paddle.device.cuda.get_device_name(0)

            paddle.device.cuda.get_device_name(paddle.CUDAPlace(0))

    '''

    return get_device_properties(device).name


def get_device_capability(device=None):
    '''
    Return the major and minor revision numbers defining the device's compute capability which are got from CUDA function `cudaDeviceProp <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g1bf9d625a931d657e08db2b4391170f0>`_.

    Parameters:
497
        device(paddle.CUDAPlace|int, optional): The device or the ID of the device. If device is None (default), the device is the current device.
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

    Returns:
        tuple(int,int): the major and minor revision numbers defining the device's compute capability.

    Examples:

        .. code-block:: python

            # required: gpu

            import paddle

            paddle.device.cuda.get_device_capability()

            paddle.device.cuda.get_device_capability(0)

            paddle.device.cuda.get_device_capability(paddle.CUDAPlace(0))

    '''
    prop = get_device_properties(device)
    return prop.major, prop.minor