optimizer.py 19.9 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

3
import paddle.v2.framework.framework as framework
Q
Qiao Longfei 已提交
4
from paddle.v2.framework.framework import unique_name, Program
5
from paddle.v2.framework.backward import append_backward_ops
Q
Qiao Longfei 已提交
6
from paddle.v2.framework.initializer import ConstantInitializer
7
from paddle.v2.framework.regularizer import append_regularization_ops
Q
Qiao Longfei 已提交
8
from paddle.v2.framework.layer_helper import LayerHelper
9

10
__all__ = [
11 12
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
    'AdamaxOptimizer'
13
]
Q
Qiao Longfei 已提交
14 15 16 17 18 19


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
20 21
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
22 23
    """

24 25
    def __init__(self, global_step=None):
        self._global_step = global_step
26 27 28 29 30
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
31
        self.helper = None
Q
Qiao Longfei 已提交
32 33 34 35 36 37

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def _initialize_tensors(self, block):
        """Create all necessary tensors, that will be shared for all parameter updates.

        Tensors like learning rate should be initialized here.

        Args:
            block: the block in which the loss variable is present
        """
        pass

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
54
        """
55 56
        pass

57 58 59 60 61 62 63 64 65 66 67 68 69
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
70
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
71 72 73 74 75 76 77 78 79 80 81 82 83
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
            raise Exception("Accumulator {} already exists for parmeter {}".
                            format(name, param.name))
Q
Qiao Longfei 已提交
84 85 86 87 88 89 90 91 92 93 94

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
            dtype=dtype or param.data_type,
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
            var, initializer=ConstantInitializer(value=float(fill_value)))
        self._accumulators[name][param.name] = var
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
132 133 134 135
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
                                 init_program=None):
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
143 144 145 146
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
147
          :param init_program: 
Q
Qiao Longfei 已提交
148
        """
149 150 151 152 153
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
154
        # for parameters and extend _finish_update method to add custom ops.
155 156

        # Create any accumulators
Q
Qiao Longfei 已提交
157 158 159
        program = loss.block.program
        self.helper = LayerHelper(
            self.__class__.__name__, program=program, init_program=init_program)
160 161 162 163 164
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])
        # Create any necessary tensors
        self._initialize_tensors(loss.block)

Q
Qiao Longfei 已提交
165 166 167 168 169 170
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is not None:
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
171

172 173 174 175 176 177 178 179 180 181
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

182 183
        if self._global_step is not None:
            return_ops.append(self._increment_global_step(loss.block))
184
        return return_ops
Q
Qiao Longfei 已提交
185

Q
Qiao Longfei 已提交
186 187 188 189 190
    def minimize(self,
                 loss,
                 init_program=None,
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
191 192
        """Add operations to minimize `loss` by updating `parameter_list`.

193
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
194 195
        `create_optimization_pass()` into one.
        """
196 197
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set or
                                           set())
198 199
        # Add regularization if any 
        params_grads = append_regularization_ops(params_grads)
Q
Qiao Longfei 已提交
200 201
        optimize_ops = self.create_optimization_pass(params_grads, loss,
                                                     init_program)
Q
Qiao Longfei 已提交
202 203 204 205 206 207 208
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

209
    def __init__(self, learning_rate, global_step=None):
Q
Qiao Longfei 已提交
210
        assert learning_rate is not None
211
        super(SGDOptimizer, self).__init__(global_step)
Q
Qiao Longfei 已提交
212 213 214
        self.type = "sgd"
        self._learning_rate = learning_rate

215
    def _initialize_tensors(self, block):
Q
Qiao Longfei 已提交
216
        lr_shape = [1]
217
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
218 219 220 221 222 223 224 225
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
Q
Qiao Longfei 已提交
226

227 228
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
229 230 231 232 233 234
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
235
                "LearningRate": self._lr
Q
Qiao Longfei 已提交
236
            },
237
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
238 239

        return sgd_op
240 241 242 243 244 245 246


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

247 248 249 250 251
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 global_step=None):
252 253
        assert learning_rate is not None
        assert momentum is not None
254
        super(MomentumOptimizer, self).__init__(global_step)
255 256 257
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
258
        self._use_nesterov = bool(use_nesterov)
259 260 261 262 263

    def _initialize_tensors(self, block):
        assert isinstance(block, framework.Block)
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
264 265 266 267 268 269 270 271
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
272 273 274 275 276

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
277
            self._add_accumulator(self._velocity_acc_str, p)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._lr
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
297 298
            attrs={"mu": self._momentum,
                   "useNesterov": self._use_nesterov})
299 300

        return momentum_op
301 302 303 304 305 306 307


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

308
    def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None):
309 310
        assert learning_rate is not None
        assert epsilon is not None
311
        super(AdagradOptimizer, self).__init__(global_step)
312 313 314 315 316 317 318
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
319 320 321 322 323 324 325 326
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
327 328 329 330 331

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
332
            self._add_accumulator(self._moment_acc_str, p)
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # create the adagrad optimizer op
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._lr
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
354 355 356 357 358 359 360 361 362 363 364 365


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
366 367
                 epsilon=1e-8,
                 global_step=None):
368 369 370 371
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
372
        super(AdamOptimizer, self).__init__(global_step)
373 374 375 376 377 378 379 380 381
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
382 383 384 385 386 387 388 389
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
390 391 392 393

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
394
        main_block = block.program.global_block()
395 396
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
            self._beta2_pow_acc, initializer=ConstantInitializer(self._beta2))
415 416 417

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
418 419
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
420 421 422 423 424 425 426 427

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
428
        # create the adam optimize op
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
457 458
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
459 460 461 462 463
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
464
        scale_beta2 = main_block.append_op(
465 466 467 468 469 470
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
471 472 473 474 475 476 477 478 479 480 481 482


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
483 484
                 epsilon=1e-8,
                 global_step=None):
485 486 487 488 489 490 491 492 493 494 495 496 497 498
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(AdamaxOptimizer, self).__init__()
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _initialize_tensors(self, block):
        lr_shape = [1]
        # create a variable for learning_rate
Q
Qiao Longfei 已提交
499 500 501 502 503 504 505 506
        self._lr = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=lr_shape,
            lod_level=1,
            persistable=True)
        self.helper.set_variable_initializer(
            var=self._lr, initializer=ConstantInitializer(self._learning_rate))
507 508 509 510

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
511 512 513 514 515 516 517 518
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))
519 520 521

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
522 523
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._lr,
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
559 560
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
561 562 563 564 565 566
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]