transpose_op_npu_test.cc 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef _WIN32
#include <unistd.h>
#endif

#include <cmath>
#include <iostream>
#include <numeric>
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"

namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;

USE_OP(transpose2);
USE_OP_DEVICE_KERNEL(transpose2, NPU);

template <typename T>
void Compare(f::Scope* scope, const p::DeviceContext& ctx) {
  // init
  auto x = scope->Var("X");
  auto out = scope->Var("Out");
  auto xshape = scope->Var("XShape");
  auto* x_t = x->GetMutable<f::LoDTensor>();
  auto* out_t = out->GetMutable<f::LoDTensor>();
  auto* xshape_t = xshape->GetMutable<f::LoDTensor>();
  auto place = ctx.GetPlace();

  int dim0 = 2;
  int dim1 = 3;
  TensorFromVector(std::vector<T>({0, 1, 2, 3, 4, 5}), ctx, x_t);
  ctx.Wait();
  x_t->Resize({dim0, dim1});
  out_t->Resize({dim0, dim1});
  ctx.Wait();
  out_t->mutable_data<T>(place);
  ctx.Wait();
  xshape_t->Resize({dim0, dim1});
  xshape_t->mutable_data<T>(place);
  f::AttributeMap attrs = {{"axis", std::vector<int>({1, 0})},
                           {"data_format", std::string("AnyLayout")}};
  auto op = f::OpRegistry::CreateOp("transpose2", {{"X", {"X"}}},
                                    {{"Out", {"Out"}}, {"XShape", {"XShape"}}},
                                    attrs);
  ctx.Wait();
  op->Run(*scope, place);
  ctx.Wait();
  std::vector<T> out_v;
  TensorToVector(*out_t, ctx, &out_v);
  ctx.Wait();

  EXPECT_EQ(out_t->numel(), dim0 * dim1);
  EXPECT_EQ(out_v[0], 0);
  EXPECT_EQ(out_v[1], 3);
  EXPECT_EQ(out_v[2], 1);
  EXPECT_EQ(out_v[3], 4);
  EXPECT_EQ(out_v[4], 2);
  EXPECT_EQ(out_v[5], 5);
}

template <typename T>
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) {
  // init
  auto xshape = scope->Var("XShape");
  auto x_grad = scope->Var("X@GRAD");
  auto out_grad = scope->Var("Out@GRAD");

  auto* x_grad_t = x_grad->GetMutable<f::LoDTensor>();
  auto* xshape_t = xshape->GetMutable<f::LoDTensor>();
  auto* out_grad_t = out_grad->GetMutable<f::LoDTensor>();

  int dim0 = 2;
  int dim1 = 3;
  auto place = ctx.GetPlace();

  TensorFromVector(std::vector<T>({0, 1, 2, 3, 4, 5}), ctx, out_grad_t);
  ctx.Wait();

  x_grad_t->Resize({dim0, dim1});
  xshape_t->Resize(
      {0, dim0,
       dim1});  // NOTE(zhiqiu): 0 is needed, see its infershape function
  out_grad_t->Resize({dim0, dim1});

  f::AttributeMap attrs = {{"axis", std::vector<int>({1, 0})},
                           {"data_format", std::string("AnyLayout")}};

  auto op = f::OpRegistry::CreateOp(
      "transpose2_grad", {{"Out@GRAD", {"Out@GRAD"}}, {"XShape", {"XShape"}}},
      {{"X@GRAD", {"X@GRAD"}}}, attrs);

  op->Run(*scope, place);
  ctx.Wait();
  std::vector<T> out_v;
  TensorToVector(*x_grad_t, ctx, &out_v);
  ctx.Wait();

  EXPECT_EQ(x_grad_t->numel(), dim0 * dim1);
  EXPECT_EQ(out_v[0], 0);
  EXPECT_EQ(out_v[1], 3);
  EXPECT_EQ(out_v[2], 1);
  EXPECT_EQ(out_v[3], 4);
  EXPECT_EQ(out_v[4], 2);
  EXPECT_EQ(out_v[5], 5);
}

TEST(transpose2, NPU_fp32) {
  f::Scope scope;
  p::NPUDeviceContext ctx(p::NPUPlace(0));
  Compare<float>(&scope, ctx);
}

TEST(transpose2_grad, NPU_fp32) {
  f::Scope scope;
  p::NPUDeviceContext ctx(p::NPUPlace(0));
  CompareGrad<float>(&scope, ctx);
}