sequence_pool_op.h 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
24 25 26
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

31 32 33 34 35 36 37 38 39
enum SeqPoolType {
  AVERAGE = 0,
  SUM = 1,
  SQRT = 2,  // square_root_n
  MAX = 3,
  LAST = 4,
  FIRST = 5
};

40
template <typename Place, typename T>
Y
Yu Yang 已提交
41
class SequencePoolKernel : public framework::OpKernel<T> {
42 43 44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
46
    int strategy = context.Attr<int>("strategy");
47 48

    auto dims = in->dims();
Q
Qiao Longfei 已提交
49
    auto lod = in->lod();
50 51
    int64_t w = in->numel() / dims[0];

Q
Qiao Longfei 已提交
52 53 54 55 56 57 58 59 60 61 62
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});

    auto lod_level_0 = lod[0];

63 64
    out->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
Q
Qiao Longfei 已提交
65 66 67
    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      Tensor in_t = in->Slice<T>(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
68
      Tensor out_t = out->Slice<T>(i, i + 1);
Q
Qiao Longfei 已提交
69
      int64_t h = static_cast<int64_t>(lod_level_0[i + 1] - lod_level_0[i]);
70 71
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
72 73 74 75 76 77 78 79

      switch (strategy) {
        case AVERAGE:
          out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
          break;
        case SUM:
          out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
          break;
L
Luo Tao 已提交
80 81 82 83
        case SQRT:
          out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                                std::sqrt(static_cast<T>(h));
          break;
84
        default:
L
Luo Tao 已提交
85
          PADDLE_THROW("unsupported pooling strategy");
86
      }
87 88 89 90 91
    }
  }
};

template <typename Place, typename T>
Y
Yu Yang 已提交
92
class SequencePoolGradKernel : public framework::OpKernel<T> {
93 94
 public:
  void Compute(const framework::ExecutionContext& context) const override {
95
    auto* in = context.Input<LoDTensor>("X");
96
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
97
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
98
    int strategy = context.Attr<int>("strategy");
99 100

    auto dims = in->dims();
101
    auto lod = in->lod()[0];
102 103 104 105
    int64_t w = in->numel() / dims[0];

    in_g->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
106 107 108
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
109
      auto out_g_t = out_g->Slice<T>(i, i + 1);
110
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
111 112
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
113
      Eigen::DSizes<int, 2> bcast(h, 1);
114 115 116 117 118 119 120 121

      switch (strategy) {
        case AVERAGE:
          in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
          break;
        case SUM:
          in_g_e.device(place) = (out_g_e).broadcast(bcast);
          break;
L
Luo Tao 已提交
122 123 124 125
        case SQRT:
          in_g_e.device(place) =
              (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
          break;
126
        default:
L
Luo Tao 已提交
127
          PADDLE_THROW("unsupported pooling strategy");
128
      }
129 130 131 132 133 134
    }
  }
};

}  // namespace operators
}  // namespace paddle