tracer.cc 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

namespace paddle {
M
minqiyang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
                  framework::OpDesc** grad_op_desc,
                  std::unordered_map<std::string, std::string>* grad_to_var) {
  std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
  PADDLE_ENFORCE(grad_op_descs.size() == 1, "Only support 1 grad op now.");
  // TODO(panyx0718): Leak?
J
JiabinYang 已提交
31 32
  // TODO(marsyang1993): Change grad_op_desc pointer to
  // vector<framework::OpDesc*> to allow multi grad_op
M
minqiyang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  *grad_op_desc = grad_op_descs[0].release();
}

void InitVar(framework::Variable* var, framework::Variable* grad_var) {
  auto& var_t = var->Get<framework::LoDTensor>();
  float* data =
      grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
          var_t.dims(), platform::CPUPlace());
  std::fill(data, data + var_t.numel(), 0.0);
}

void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                   const VarBasePtrMap& outputs, framework::BlockDesc* block,
                   const bool stop_gradient) {
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
63
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
64 65
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
66
      invars.push_back(inp->var_);
M
minqiyang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
      vars[inp->var_desc_->Name()] = inp;
      if (inp->pre_op_) {
        op->pre_ops_[it.first].push_back(inp->pre_op_);
        op->pre_ops_out_idx_[it.first].push_back(inp->pre_op_out_idx_);
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
85
      outvars.push_back(out->var_);
M
minqiyang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
      out->stop_gradient_ = stop_gradient;
      out->pre_op_ = op;
      out->pre_op_out_name_ = it.first;
      out->pre_op_out_idx_ = i;

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
  platform::CPUPlace place;
  PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
  p.op.RuntimeInferShape(scope, place, ctx);
  p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));

  if (!stop_gradient) {
    framework::OpDesc* grad_op_desc;
120 121 122 123
    // TODO(panyx): Is this leaked?
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
    CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var.get());
M
minqiyang 已提交
124 125 126 127 128 129 130 131 132 133
    op->grad_op_desc_ = grad_op_desc;

    for (auto it : grad_op_desc->Inputs()) {
      auto& grad_in_vars = op->grad_input_vars_[it.first];
      for (const std::string& grad_invar : it.second) {
        block->FindRecursiveOrCreateVar(grad_invar);
        auto var_it = grad_to_var->find(grad_invar);
        if (var_it == grad_to_var->end()) {
          auto fwd_var_it = vars.find(grad_invar);
          PADDLE_ENFORCE(fwd_var_it != vars.end());
134
          // Forward inputs or outputs.
M
minqiyang 已提交
135
          grad_in_vars.push_back(fwd_var_it->second->var_);
M
minqiyang 已提交
136 137
        } else {
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
138 139
          if (!var->grads_->var_->IsInitialized()) {
            InitVar(var->var_, var->grads_->var_);
M
minqiyang 已提交
140
          }
141
          // Douts.
M
minqiyang 已提交
142
          grad_in_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
143 144 145 146 147 148 149 150 151 152 153
        }
      }
    }

    for (auto it : grad_op_desc->Outputs()) {
      auto& grad_out_vars = op->grad_output_vars_[it.first];
      for (const std::string& grad_outvar : it.second) {
        block->FindRecursiveOrCreateVar(grad_outvar);
        auto var_it = grad_to_var->find(grad_outvar);
        PADDLE_ENFORCE(var_it != grad_to_var->end());
        VarBase* var = vars[var_it->second];
M
minqiyang 已提交
154 155
        if (!var->grads_->var_->IsInitialized()) {
          InitVar(var->var_, var->grads_->var_);
M
minqiyang 已提交
156
        }
M
minqiyang 已提交
157
        grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
158 159 160 161 162 163 164
      }
    }
  }

  op->block_ = block;
}

165 166 167 168
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
169 170
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
171 172
  for (VarBase* inp : inputs) {
    if (inp->pre_op_) {
X
Xin Pan 已提交
173 174
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->pre_op_);
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->pre_op_out_idx_);
175
    } else {
X
Xin Pan 已提交
176
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
177 178 179
    }
  }

X
Xin Pan 已提交
180
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
181 182 183 184
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
    out->stop_gradient_ = stop_gradient;
    out->pre_op_ = op;
X
Xin Pan 已提交
185
    out->pre_op_out_name_ = PyLayer::kFwdOut;
186 187 188
    out->pre_op_out_idx_ = i;
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
189 190 191 192
    auto& grad_input_vars =
        op->grad_input_vars_[framework::GradVarName(PyLayer::kFwdInp)];
    auto& grad_output_vars =
        op->grad_output_vars_[framework::GradVarName(PyLayer::kFwdOut)];
193 194 195 196 197 198 199 200

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
    for (VarBase* out : outputs) {
M
minqiyang 已提交
201
      grad_input_vars.push_back(out->grads_->var_);
202 203 204 205 206
      if (!grad_input_vars.back()->IsInitialized()) {
        InitVar(out->var_, grad_input_vars.back());
      }
    }
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
207
      grad_output_vars.push_back(inp->grads_->var_);
208 209 210 211 212 213 214 215
      if (!grad_output_vars.back()->IsInitialized()) {
        InitVar(inp->var_, grad_output_vars.back());
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
216
}  // namespace imperative
217
}  // namespace paddle