conv.py 35.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
18 19
    'Conv2d',
    'Conv3d',
L
LielinJiang 已提交
20 21
    'ConvTranspose2d',
    'ConvTranspose3d',
22 23
    #       'TreeConv',
    #       'Conv1D'
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
]

import numpy as np

from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


41 42 43 44 45 46 47 48 49
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.

    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

75 76 77 78 79 80 81 82 83 84 85 86
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
87 88 89 90 91
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
92
        self._padding_mode = padding_mode
L
LielinJiang 已提交
93 94 95 96 97 98
        self.output_padding = output_padding

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
99 100 101 102 103 104 105 106
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
                _paired_padding = utils.convert_to_list(padding, 2, 'padding')
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
107 108 109 110 111 112 113 114 115
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)


116
class Conv2d(_ConvNd):
117
    """
S
swtkiwi 已提交
118

119
    This interface is used to construct a callable object of the ``Conv2d`` class.
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \\sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Parameters:
152 153 154 155 156 157
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by convolution.
        kernel_size (int|list|tuple): The size of convolution kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
158 159 160 161 162 163 164
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
165 166
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` .
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
167 168 169 170 171 172 173
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
174
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
175 176 177 178
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
179
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d.
180 181 182 183 184 185 186 187 188 189 190 191
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

192 193 194 195 196 197 198 199 200 201 202 203
    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel_size[0] - 1) + 1))}{strides[0]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel_size[1] - 1) + 1))}{strides[1]} + 1
204 205 206 207 208

    Examples:
        .. code-block:: python

          import numpy as np
209 210 211
    
          import paddle
          import paddle.nn as nn
212 213

          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
214 215 216 217 218 219 220 221
          
          paddle.disable_static()

          x_var = paddle.to_tensor(x)
          conv = nn.Conv2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
222 223 224 225 226
          
          # (2, 6, 6, 6)
    """

    def __init__(self,
227 228 229
                 in_channels,
                 out_channels,
                 kernel_size,
230
                 stride=1,
231
                 padding=0,
232 233
                 dilation=1,
                 groups=1,
234 235
                 padding_mode='zeros',
                 weight_attr=None,
236
                 bias_attr=None,
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                 data_format="NCHW"):
        super(Conv2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv2d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
267 268

        out = F.conv2d(
269
            x,
270 271 272 273 274 275 276 277 278 279
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
280
class ConvTranspose2d(_ConvNd):
281
    """
L
LielinJiang 已提交
282
    This interface is used to construct a callable object of the ``ConvTranspose2d`` class.
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

    Parameters:
L
LielinJiang 已提交
335 336 337 338 339 340 341
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
342 343 344 345 346 347 348
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
349
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
350 351
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
L
LielinJiang 已提交
352
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
353 354 355 356 357 358 359 360
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
L
LielinJiang 已提交
361
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
362 363 364
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
L
LielinJiang 已提交
365
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
366 367 368 369 370 371 372 373 374 375 376 377
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

L
LielinJiang 已提交
378 379 380 381 382 383 384 385 386 387 388
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
389 390 391 392 393

    Examples:
       .. code-block:: python

          import numpy as np
L
LielinJiang 已提交
394 395
          import paddle
          import paddle.nn as nn
396 397

          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
L
LielinJiang 已提交
398 399 400 401 402 403 404 405

          paddle.disable_static()

          x_var = paddle.to_tensor(x)
          conv = nn.ConvTranspose2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
406 407 408 409 410
          
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
411 412 413
                 in_channels,
                 out_channels,
                 kernel_size,
414
                 stride=1,
L
LielinJiang 已提交
415 416
                 padding=0,
                 output_padding=0,
417 418
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
419
                 weight_attr=None,
420
                 bias_attr=None,
L
LielinJiang 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
                 data_format="NCHW"):
        super(ConvTranspose2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
438
        if output_size is None:
L
LielinJiang 已提交
439
            output_padding = self.output_padding
440
        else:
L
LielinJiang 已提交
441
            output_padding = 0
442

L
LielinJiang 已提交
443 444
        out = F.conv_transpose2d(
            x,
445 446 447
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
448
            output_padding=output_padding,
449 450 451
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
452
            output_size=output_size,
453 454 455 456
            data_format=self._data_format)
        return out


457
class Conv3d(_ConvNd):
458
    """
S
swtkiwi 已提交
459

460
    **Convlution3d Layer**
461

462
    The convolution3d layer calculates the output based on the input, filter
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Parameters:
488 489 490 491
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size (int|list|tuple, optional): The size of the convolving kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
492 493 494 495 496 497 498 499 500
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
501
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
502 503 504 505 506 507 508
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
509 510
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.

528 529 530 531 532 533 534 535 536 537 538 539 540
    Shape:

        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
541 542 543 544 545 546 547 548 549

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

          import numpy as np
550 551 552
          
          import paddle
          import paddle.nn as nn
553 554

          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
555 556 557 558 559 560 561 562
          
          paddle.disable_static()

          x_var = dg.to_variable(x)
          conv = nn.Conv3d(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
563 564 565 566 567
          
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
568 569 570
                 in_channels,
                 out_channels,
                 kernel_size,
571 572 573 574
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
575 576
                 padding_mode='zeros',
                 weight_attr=None,
577
                 bias_attr=None,
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                 data_format="NCDHW"):
        super(Conv3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv3d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
608 609

        out = F.conv3d(
610
            x,
611 612 613 614 615 616 617 618 619 620
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
621
class ConvTranspose3d(_ConvNd):
622
    """
S
swtkiwi 已提交
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

    **Note**:

L
LielinJiang 已提交
657
          The conv_transpose3d can be seen as the backward of the conv3d. For conv3d, 
658
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
L
LielinJiang 已提交
659
          so for conv_transpose3d, when stride > 1, input shape maps multiple output shape.
660 661 662 663 664 665
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
L
LielinJiang 已提交
666
          conv_transpose3d can compute the kernel size automatically.
667 668 669


    Parameters:
L
LielinJiang 已提交
670 671 672 673 674 675 676 677 678
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
679 680 681 682 683 684 685
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
686 687 688
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
689 690 691 692 693 694 695 696
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
L
LielinJiang 已提交
697
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
698 699 700 701 702 703 704 705
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
706 707 708 709 710
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
711 712 713 714 715 716 717 718
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.

L
LielinJiang 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731
    Shape:
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel_size[2] - 1) + 1 \\\\

732 733 734 735 736 737 738 739 740

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

          import numpy as np
L
LielinJiang 已提交
741 742
          import paddle
          import paddle.nn as nn
743 744

          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
L
LielinJiang 已提交
745 746 747 748 749 750 751 752
          
          paddle.disable_static()

          x_var = paddle.to_tensor(x)
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
753 754 755 756 757
          
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
758 759 760
                 in_channels,
                 out_channels,
                 kernel_size,
761
                 stride=1,
L
LielinJiang 已提交
762 763
                 padding=0,
                 output_padding=0,
764 765
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
766
                 weight_attr=None,
767
                 bias_attr=None,
L
LielinJiang 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                 data_format="NCDHW"):
        super(ConvTranspose3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size):
785
        if output_size is None:
L
LielinJiang 已提交
786
            output_padding = self.output_padding
787
        else:
L
LielinJiang 已提交
788
            output_padding = 0
789

L
LielinJiang 已提交
790 791
        out = F.conv_transpose3d(
            x,
792 793 794
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
795
            output_padding=output_padding,
796 797 798
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
799
            output_size=output_size,
800 801
            data_format=self._data_format)
        return out