argsort_kernel.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/argsort_kernel.h"

17
#include "paddle/phi/backends/xpu/enforce_xpu.h"
18 19
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
20
#include "paddle/phi/kernels/funcs/math_function.h"
21 22

namespace phi {
T
TTerror 已提交
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <typename T, typename TID>
static inline void xpu_argsort(xpu::Context* ctx,
                               const T* input_data,
                               T* output_data,
                               TID* indices_data,
                               int m,
                               int n,
                               bool descending) {
  int ret =
      xpu::sort(ctx, input_data, output_data, indices_data, m, n, descending);
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "sort");
}

template <typename T>
static inline void xpu_transpose(xpu::Context* ctx,
                                 const T* x,
                                 T* y,
                                 const std::vector<int>& xshape,
                                 const std::vector<int>& permute) {
  int ret = xpu::transpose(ctx, x, y, xshape, permute);
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "transpose");
}

template <typename TX, typename TY>
static inline void xpu_cast(xpu::Context* ctx, const TX* x, TY* y, int len) {
  int ret = xpu::cast(ctx, x, y, len);
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "cast");
}

template <typename T,
          bool VALUE_NEED_CAST = false,
          bool INDEX_NEED_CAST = false>
struct XPUArgsort {
  void operator()(xpu::Context* ctx,
                  const T* input_data,
                  T* output_data,
                  int64_t* indices_data,
                  const std::vector<int>& data_shape,
                  const std::vector<int>& permute,
                  bool descending) {
    xpu::ctx_guard RAII_GUARD(ctx);
    int m = data_shape[0] * data_shape[2];
    int n = data_shape[1];
    int len = data_shape[0] * data_shape[1] * data_shape[2];
    std::vector<int> trans_data_shape{
        data_shape[0], data_shape[2], data_shape[1]};

    T* input_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
    T* output_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
    int64_t* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

    xpu_transpose(ctx, input_data, input_data_trans, data_shape, permute);
    xpu_argsort(ctx,
                input_data_trans,
                output_data_trans,
                indices_data_trans,
                m,
                n,
                descending);
    xpu_transpose(
        ctx, output_data_trans, output_data, trans_data_shape, permute);
    xpu_transpose(
        ctx, indices_data_trans, indices_data, trans_data_shape, permute);
  }
};

template <typename T>
struct XPUArgsort<T, false, true> {
  void operator()(xpu::Context* ctx,
                  const T* input_data,
                  T* output_data,
                  int64_t* indices_data,
                  const std::vector<int>& data_shape,
                  const std::vector<int>& permute,
                  bool descending) {
    xpu::ctx_guard RAII_GUARD(ctx);
    int m = data_shape[0] * data_shape[2];
    int n = data_shape[1];
    int len = data_shape[0] * data_shape[1] * data_shape[2];
    std::vector<int> trans_data_shape{
        data_shape[0], data_shape[2], data_shape[1]};

    T* input_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
    T* output_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
    int* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
    int64_t* cast_data_int64 = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

    xpu_transpose(ctx, input_data, input_data_trans, data_shape, permute);
    xpu_argsort(ctx,
                input_data_trans,
                output_data_trans,
                indices_data_trans,
                m,
                n,
                descending);
    xpu_transpose(
        ctx, output_data_trans, output_data, trans_data_shape, permute);
    xpu_cast(ctx, indices_data_trans, cast_data_int64, len);
    xpu_transpose(
        ctx, cast_data_int64, indices_data, trans_data_shape, permute);
  }
};

template <>
struct XPUArgsort<int64_t, true, true> {
  void operator()(xpu::Context* ctx,
                  const int64_t* input_data,
                  int64_t* output_data,
                  int64_t* indices_data,
                  const std::vector<int>& data_shape,
                  const std::vector<int>& permute,
                  bool descending) {
    xpu::ctx_guard RAII_GUARD(ctx);
    int m = data_shape[0] * data_shape[2];
    int n = data_shape[1];
    int len = data_shape[0] * data_shape[1] * data_shape[2];
    std::vector<int> trans_data_shape{
        data_shape[0], data_shape[2], data_shape[1]};

    int* input_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
    int* output_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
    int* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
    int* cast_data_int = RAII_GUARD.alloc_l3_or_gm<int>(len);
    int64_t* cast_data_int64 = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

    xpu_cast(ctx, input_data, cast_data_int, len);
    xpu_transpose(ctx, cast_data_int, input_data_trans, data_shape, permute);
    xpu_argsort(ctx,
                input_data_trans,
                output_data_trans,
                indices_data_trans,
                m,
                n,
                descending);

    xpu_cast(ctx, output_data_trans, cast_data_int64, len);
    xpu_transpose(ctx, cast_data_int64, output_data, trans_data_shape, permute);
    xpu_cast(ctx, indices_data_trans, cast_data_int64, len);
    xpu_transpose(
        ctx, cast_data_int64, indices_data, trans_data_shape, permute);
  }
};

167 168 169 170 171 172 173 174
template <typename T, typename Context>
void ArgsortKernel(const Context& dev_ctx,
                   const DenseTensor& input,
                   int axis,
                   bool descending,
                   DenseTensor* output,
                   DenseTensor* indices) {
  auto in_dims = input.dims();
175
  auto rank = in_dims.size();
176 177 178 179 180 181 182
  axis = (axis < 0) ? (in_dims.size() + axis) : axis;
  int n = in_dims[axis];

  auto input_data = input.data<T>();
  auto output_data = dev_ctx.template Alloc<T>(output);
  auto indices_data = dev_ctx.template Alloc<int64_t>(indices);

183 184 185 186 187 188
  if (rank == 0) {
    phi::Copy<Context>(dev_ctx, input, dev_ctx.GetPlace(), false, output);
    phi::funcs::set_constant(dev_ctx, indices, 0);
    return;
  }

189 190 191 192 193 194
  int len_before = phi::product(phi::slice_ddim(in_dims, 0, axis));
  int len_after =
      phi::product(phi::slice_ddim(in_dims, axis + 1, in_dims.size()));
  std::vector<int> permute_vec{0, 2, 1};
  std::vector<int> data_shape{len_before, n, len_after};

195 196 197 198 199 200 201 202 203 204 205 206 207
  bool int64_need_cast = false;
  bool index_need_cast = false;
  if (std::is_same<T, int64_t>::value) {
    if ((n > 10240) && (n <= 16384)) {
      int64_need_cast = true;
    }
    if ((n > 8192) && (n <= 10240)) {
      index_need_cast = true;
    }
  } else {
    if ((n > 10240) && (n <= 16384)) {
      index_need_cast = true;
    }
208 209
  }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  if (int64_need_cast) {
    XPUArgsort<T, true, true>()(dev_ctx.x_context(),
                                input_data,
                                output_data,
                                indices_data,
                                data_shape,
                                permute_vec,
                                descending);
  } else if (index_need_cast) {
    XPUArgsort<T, false, true>()(dev_ctx.x_context(),
                                 input_data,
                                 output_data,
                                 indices_data,
                                 data_shape,
                                 permute_vec,
                                 descending);
  } else {
    XPUArgsort<T, false, false>()(dev_ctx.x_context(),
228 229 230
                                  input_data,
                                  output_data,
                                  indices_data,
231 232
                                  data_shape,
                                  permute_vec,
T
TTerror 已提交
233 234
                                  descending);
  }
235
}
T
TTerror 已提交
236

237
}  // namespace phi
T
TTerror 已提交
238

239 240
PD_REGISTER_KERNEL(
    argsort, XPU, ALL_LAYOUT, phi::ArgsortKernel, float, int, int64_t) {}