subgraph_detector.cc 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19 20
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include <string>
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
21 22 23 24 25

namespace paddle {
namespace inference {
namespace analysis {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
using framework::ir::Node;

std::pair<std::vector<Node *>, std::vector<Node *>>
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) {  // NOLINT
  std::unordered_set<Node *> nodes(graph.begin(), graph.end());
  std::unordered_set<Node *> inputs;
  std::unordered_set<Node *> outputs;
  // Input a Value, check whether its inlink is in the subgraph.
  auto inlink_in_subgraph = [&](Node *n) {
    for (auto *in : n->inputs) {
      if (nodes.count(in)) return true;
    }
    return false;
  };

  for (auto &node : graph) {
    for (auto *in : node->inputs) {
      // The Value that is written by nodes inside a sub-graph shouldn't be the
      // input of the sub-graph.
      if (!nodes.count(in) && in->IsVar() && !inlink_in_subgraph(in)) {
        inputs.insert(in);
      }
    }
    for (auto *out : node->outputs) {
      if (!nodes.count(out) && out->IsVar()) {
        outputs.insert(out);
      }
    }
  }
  return std::make_pair(std::vector<Node *>(inputs.begin(), inputs.end()),
                        std::vector<Node *>(outputs.begin(), outputs.end()));
}

// Filter the Intermediate results of the subgraph node.
void FilterRedundantOutputOfSubGraph(Graph *graph) {
  std::vector<Node *> op_nodes;
  for (auto &node : TopologicalSort(*graph)) {
    if (node.IsVar() || Agent(&node).deleted()) {
      continue;
    }
    op_nodes.push_back(&node);
  }
  size_t op_num = op_nodes.size();
  for (size_t i = 0; i < op_num; i++) {
    if (op_nodes[i]->IsOp()) continue;
    std::unordered_set<std::string> follow_up_input_names;
    for (size_t j = i + 1; j < op_num; j++) {
      for (auto *in : op_nodes[j]->inputs) {
        follow_up_input_names.insert(in->Name());
      }
    }
    std::vector<Node *> filtered_subgraph_outlinks;
    for (auto *out : op_nodes[i]->outputs) {
      if (follow_up_input_names.count(out->Name())) {
        filtered_subgraph_outlinks.push_back(out);
      } else {
        Agent(out).set_deleted(true);
      }
    }
    // The filtered_subgraph_outlinks may be empty.
    op_nodes[i]->outputs = filtered_subgraph_outlinks;
  }
}
89

90
std::vector<std::vector<Node *>> SubgraphDetector::operator()() {
91 92 93 94 95
  MarkNodesInsideSubGraph();
  return ExtractSubGraphs();
}

// Mark the output variables inside a subgraph with the func.
96 97 98
inline void MarkOutLinksInSubGraph(const Node *func) {
  for (auto *var : func->outputs) {
    Agent(var).set_marked(true);
99 100 101
  }
}

102 103
void SubgraphDetector::MarkNodesInsideSubGraph() {
  for (auto &node : framework::ir::GraphTraits::DFS(*graph_)) {
104
    if (node_inside_subgraph_teller_(&node)) {
105 106
      Agent(&node).set_marked(true);
      if (node.IsOp()) {
107 108 109 110 111 112
        // If a function is inside the sub-graph, mark all the output variables
        // to be inside too, so that two marked functions will be inside a same
        // sub-graph, lets take a example:  A_function->var->B_function, if
        // A_function is marked, var should also be marked, so that B_function
        // will be in the same sub-graph with A_function if B_function is
        // marked.
113
        MarkOutLinksInSubGraph(&node);
114 115 116 117 118 119 120 121 122 123 124 125 126
      }
    }
  }
}

// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using node_map_t = std::unordered_map<int, Node *>;
// Find the ancestor id of a node.
int UnionFindGetAncestor(const node_map_t &node_map, size_t id) {
  int tmp = id;
  do {
127 128
    tmp = Agent(node_map.at(tmp)).union_find_parent();
  } while (Agent(node_map.at(tmp)).union_find_parent() != tmp);
129 130 131 132 133 134 135
  return tmp;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
  int a_ancestor = UnionFindGetAncestor(node_map, a);
  int b_ancestor = UnionFindGetAncestor(node_map, b);
136 137 138
  Agent(node_map.at(b_ancestor)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(a)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(b)).set_union_find_parent(a_ancestor);
139 140
}

N
nhzlx 已提交
141 142 143 144 145 146 147 148 149 150 151
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct BriefNode {
  explicit BriefNode(Node *n) { node = n; }
  Node *node;
  std::vector<BriefNode *> inlinks;
  std::vector<BriefNode *> outlinks;
};

152 153 154 155 156 157 158 159
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
N
nhzlx 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
                          int src_id, int dst_id) {
  // merge the two adjacent nodes into one node.
  BriefNode *src_node = node_map.at(src_id);
  BriefNode *dst_node = node_map.at(dst_id);

  std::unordered_set<BriefNode *> inputs(src_node->inlinks.begin(),
                                         src_node->inlinks.end());
  std::unordered_set<BriefNode *> outputs;

  for (auto *n : src_node->outlinks) {
    if (n != dst_node) outputs.insert(n);
  }

  // Add the inlinks and outlinks of dst node to src node.
  std::vector<BriefNode *> dst_in_nodes = dst_node->inlinks;
  for (BriefNode *node : dst_in_nodes) {
    if (node != src_node) {
      inputs.insert(node);
    }
  }

  std::vector<BriefNode *> dst_out_nodes = dst_node->outlinks;
  for (BriefNode *node : dst_out_nodes) {
    outputs.insert(node);
  }

187 188 189 190 191 192 193
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
  src_node->inlinks = std::vector<BriefNode *>(inputs.begin(), inputs.end());
  src_node->outlinks = std::vector<BriefNode *>(outputs.begin(), outputs.end());
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
#else
N
nhzlx 已提交
194 195 196 197 198 199
  src_node->inlinks =
      std::move(std::vector<BriefNode *>(inputs.begin(), inputs.end()));
  src_node->outlinks =
      std::move(std::vector<BriefNode *>(outputs.begin(), outputs.end()));
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
200
#endif
N
nhzlx 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  auto inlink_or_outlink_cleaner = [&](std::vector<BriefNode *> &nodes) {
    for (auto *&n : nodes) {
      if (n == src_node || n == dst_node) {
        n = src_node;
      }
    }
  };
  // Change all the dst inputs and outputs corresponding inlink and
  // outlink to the src node.
  for (auto *node : src_node->inlinks) {
    inlink_or_outlink_cleaner(node->outlinks);
  }

  for (auto *node : src_node->outlinks) {
    inlink_or_outlink_cleaner(node->inlinks);
  }
}

N
nhzlx 已提交
220
// FlexibleDFS
N
nhzlx 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void FlexibleDFS(const std::vector<BriefNode *> &source, bool reverse,
                 const std::function<bool(const BriefNode *)> &enter,
                 const std::function<bool(const BriefNode *)> &leave) {
  typedef struct {
    const BriefNode *node;
    bool leave;
  } FNode;

  std::vector<FNode> stack;
  for (auto &node : source) {
    stack.push_back(FNode{node, false});
  }
  std::unordered_set<const BriefNode *> visited;
  while (!stack.empty()) {
    auto fnode = stack.back();
    stack.pop_back();

    if (fnode.leave) {
      if (leave && !leave(fnode.node)) return;
    }
    if (visited.count(fnode.node)) continue;
    visited.insert(fnode.node);

    if (enter && !enter(fnode.node)) return;

    if (leave) stack.push_back(FNode{fnode.node, true});
    const std::vector<BriefNode *> iter_nodes =
        reverse == true ? fnode.node->inlinks : fnode.node->outlinks;
    for (const BriefNode *node : iter_nodes) {
      if (!visited.count(node)) {
        stack.push_back(FNode{node, false});
      }
    }
  }
}

262
std::vector<std::vector<Node *>> SubgraphDetector::ExtractSubGraphs() {
N
nhzlx 已提交
263
  // Run the Extract algorithm to find all subgraphs.
264
  std::vector<Node *> marked_nodes;
N
nhzlx 已提交
265 266 267 268
  //  We use brief_node_map to represent the original graph in order to avoid
  //  changing the original graph.
  std::unordered_map<int, BriefNode *> brief_node_map;

269 270 271 272 273 274
  std::unordered_set<int32_t> valid_node_ids;
  for (auto *node : graph_->Nodes()) {
    valid_node_ids.insert(node->id());
  }

  for (auto &node : framework::ir::GraphTraits::TS(*graph_)) {
N
nhzlx 已提交
275
    brief_node_map[node.id()] = new BriefNode(&node);
276
    if (Agent(&node).marked()) {
277 278 279
      marked_nodes.push_back(&node);
    }
  }
N
nhzlx 已提交
280

281 282 283 284
  // extract sub-graphs in the marked node set, use Union Find algorithm.
  node_map_t node_map;  // id to ptr
  for (auto *n : marked_nodes) {
    // n's parent == n.id means it is the ancestor
285
    Agent(n).set_union_find_parent(n->id());
286 287
    node_map[n->id()] = n;
  }
N
nhzlx 已提交
288 289 290

  // create breif node map
  for (auto &itr : brief_node_map) {
291 292 293 294 295 296
    for (Node *node : itr.second->node->inputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->inlinks.push_back(brief_node_map.at(node->id()));
N
nhzlx 已提交
297 298
    }

299 300 301 302 303 304
    for (Node *node : itr.second->node->outputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->outlinks.push_back(brief_node_map.at(node->id()));
N
nhzlx 已提交
305 306 307 308 309 310
    }
  }

  for (auto &itr : brief_node_map) {
    BriefNode *brief_node = itr.second;

311 312
    if (!Agent(brief_node->node).marked()) {
      VLOG(4) << brief_node->node->id() << " node not a trt candidate.";
N
nhzlx 已提交
313 314 315 316 317 318
      continue;
    }

    //  Our algorithm must guarantee that:
    //  1. The graph is always directed acyclic graph(DAG).
    //  2. If there is a path in the subgraph from X to Y (X and Y are both
319 320
    //  nodes in the subgraph), then all paths from X to Y are in the
    //  subgraph.
N
nhzlx 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333
    //
    //  In order to achieve the above guarantee.
    //  For adjacent nodes src -> dst.
    //  1. Get all dst input nodes except src.
    //  2. Reverse DFS from those input nodes
    //  3. If there is a path from input nodes to src,
    //  then the src and dst nodes can not be fused into one node,
    //  otherwise it can be done.

    while (true) {
      std::unordered_set<BriefNode *> contract_nodes;
      for (auto *out : brief_node->outlinks) {
        // must be an trt candidate
334
        if (!Agent(out->node).marked()) continue;
N
nhzlx 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        // get all dst input nodes except src.
        std::vector<BriefNode *> source_nodes;
        for (auto *n : out->inlinks) {
          if (n != brief_node) {
            source_nodes.push_back(n);
          }
        }

        // Reverse DFS from the source_nodes.
        bool have_excess_path = false;
        FlexibleDFS(source_nodes, true, nullptr,
                    [&have_excess_path, brief_node](const BriefNode *n) {
                      if (n == brief_node) {
                        have_excess_path = true;
                        return false;
                      }
                      return true;
                    });
        if (have_excess_path) continue;
        contract_nodes.insert(out);
      }
      if (contract_nodes.empty()) break;

      for (auto dst_node : contract_nodes) {
        UnionFindCombine(node_map, brief_node->node->id(),
                         dst_node->node->id());
        UnionContractedNodes(brief_node_map, brief_node->node->id(),
                             dst_node->node->id());
363 364 365 366 367 368
      }
    }
  }

  std::unordered_map<int /*ancestor*/, std::vector<Node *>> clusters;
  for (auto *n : marked_nodes) {
369 370
    if (n->IsOp()) {
      clusters[UnionFindGetAncestor(node_map, Agent(n).union_find_parent())]
371 372 373 374 375 376 377 378 379 380 381 382
          .push_back(n);
    }
  }
  std::vector<std::vector<Node *>> result;
  std::for_each(clusters.begin(), clusters.end(),
                [&](const decltype(clusters)::value_type &it) {
                  result.push_back(it.second);
                });

  return result;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
void SubGraphFuser::operator()() { ReplaceNodesWithSubGraphs(); }

void RemoveIntermediateOutputInSubgraph(const std::vector<Node *> &subgraph,
                                        Graph *graph,
                                        std::vector<Node *> *outputs) {
  std::unordered_set<Node *> subgraph_set(subgraph.begin(), subgraph.end());
  std::unordered_set<Node *> valid_output;

  for (auto *output : *outputs) {
    int num_used = 0;
    for (auto *node : output->outputs) {
      if (!subgraph_set.count(node)) ++num_used;
      if (num_used > 0) valid_output.insert(output);
    }
  }

  outputs->assign(valid_output.begin(), valid_output.end());
}

void DetachDeletedNodes(framework::ir::Graph *graph) {
  std::unordered_set<const Node *> nodes;
  for (auto *node : graph->Nodes()) {
    if (Agent(node).deleted()) {
      node->inputs.clear();
      node->outputs.clear();
    }
  }
}
411

412 413
void SubGraphFuser::ReplaceNodesWithSubGraphs() {
  auto subgraphs = SubgraphDetector(graph_, node_inside_subgraph_teller_)();
414
  for (auto &subgraph : subgraphs) {
T
Tao Luo 已提交
415
    if (subgraph.size() <= (size_t)min_subgraph_size_) continue;
416
    std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end());
417 418 419
    // replace this sub-graph with the first node. Two steps: 1. Create a Block
    // Node that contains this subgraph 2. Mark the nodes inside the sub-graph
    // as deleted. 3. Replace the deleted node with the new Block Node.
420 421 422 423
    framework::OpDesc empty_desc;
    empty_desc.SetType("tensorrt_engine");
    auto *block_node = graph_->CreateOpNode(&empty_desc);
    Agent(block_node).set_subgraph({});
424
    auto io = ExtractInputAndOutputOfSubGraph(subgraph);
425 426 427 428
    block_node->inputs = std::move(io.first);
    block_node->outputs = std::move(io.second);

    RemoveIntermediateOutputInSubgraph(subgraph, graph_, &block_node->outputs);
N
nhzlx 已提交
429

430 431 432
    for (auto *node : subgraph) {
      // TODO(Superjomn) need a unified mechanism to treat deleted node in each
      // pass.
433 434
      Agent(node).set_deleted(true);
      Agent(block_node).subgraph()->push_back(node);
435 436
    }

437 438 439 440 441 442 443 444 445 446 447
    // Change all the sub-graph's inputs and outputs corresponding inlink and
    // outlink to this sub-graph node.
    auto inlink_or_outlink_cleaner = [&](std::vector<Node *> &nodes) {
      for (auto *&n : nodes) {
        if (subgraph_uniq.count(n)) {
          n = block_node;
        }
      }
      std::unordered_set<Node *> uniq(nodes.begin(), nodes.end());
      nodes.assign(uniq.begin(), uniq.end());
    };
448 449
    for (auto *i : block_node->inputs) {
      inlink_or_outlink_cleaner(i->outputs);
450
    }
451 452
    for (auto *&o : block_node->outputs) {
      inlink_or_outlink_cleaner(o->inputs);
453 454
    }
  }
455
  // DetachDeletedNodes(graph_);
N
nhzlx 已提交
456
  FilterRedundantOutputOfSubGraph(graph_);
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
inline bool CheckNodeIndegreeEquals(const Node &node, size_t n) {
  return node.inputs.size() == n;
}

NodesTSIterator::NodesTSIterator(const std::vector<Node *> &source) {
  PADDLE_ENFORCE(!source.empty(),
                 "Start points of topological sorting should not be empty!");
  // CHECK all the inputs' in-degree is 0
  for (auto *node : source) {
    PADDLE_ENFORCE(CheckNodeIndegreeEquals(*node, 0));
  }

  std::unordered_set<Node *> visited;
  std::unordered_set<Node *> to_visit{source.begin(), source.end()};

  std::vector<Node *> inlink_visited;
  while (!to_visit.empty()) {
    std::vector<Node *> queue(to_visit.begin(), to_visit.end());
    for (auto *p : queue) {
      if (Agent(p).deleted()) {
        visited.insert(p);
        to_visit.erase(p);
      }

      inlink_visited.clear();

      std::copy_if(p->inputs.begin(), p->inputs.end(),
                   std::back_inserter(inlink_visited),
                   [&](Node *x) -> bool { return visited.count(x) != 0; });

      if (inlink_visited.size() == p->inputs.size()) {
        sorted_.push_back(p);
        for (auto *_ : p->outputs) {
          if (!visited.count(_)) {
            to_visit.insert(_);
          }
        }

        to_visit.erase(p);
        visited.insert(p);
      }
    }
  }
}

NodesTSIterator::NodesTSIterator(const NodesTSIterator &other)
    : sorted_(other.sorted_), cursor_(other.cursor_) {}

Node &NodesTSIterator::operator*() {
  PADDLE_ENFORCE_LT(cursor_, sorted_.size());
  return *sorted_[cursor_];
}

NodesTSIterator &NodesTSIterator::operator++() {
  if (++cursor_ >= sorted_.size()) {
    sorted_.clear();
    cursor_ = 0;
  }
  return *this;
}
NodesTSIterator &NodesTSIterator::operator=(const NodesTSIterator &other) {
  cursor_ = other.cursor_;
  sorted_ = other.sorted_;
  return *this;
}

bool NodesTSIterator::operator==(const NodesTSIterator &other) {
  return sorted_ == other.sorted_ && cursor_ == other.cursor_;
}

Node *NodesTSIterator::operator->() {
  PADDLE_ENFORCE_LT(cursor_, sorted_.size());
  return sorted_[cursor_];
}

534 535 536
}  // namespace analysis
}  // namespace inference
}  // namespace paddle