fusion_seqconv_eltadd_relu_op.cc 9.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_seqconv_eltadd_relu_op.h"
#include <algorithm>  // for min, max
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"

namespace paddle {
namespace operators {

void FusionSeqConvEltAddReluOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"),
                 "Input(X) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasInput("Filter"),
      "Input(Filter) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasInput("Bias"),
      "Input(Bias) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("Out"),
      "Output(Out) of FusionSeqConvEltAddReluOp should not be null.");
  PADDLE_ENFORCE(
      ctx->HasOutput("ColMat"),
      "Output(ColMat) of FusionSeqConvEltAddReluOp should not be null.");

  auto x_dims = ctx->GetInputDim("X");
  auto w_dims = ctx->GetInputDim("Filter");
  PADDLE_ENFORCE(
      ctx->Attrs().Get<int>("contextStride") == 1,
      "Currently, FusionSeqConvEltAddReluOp only supports contextStride=1.");
  PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
                 "Input(X, Filter) should be 2-D tensor.");
  PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
                 "Input(X, Filter) should be 2-D tensor.");
  PADDLE_ENFORCE(
      w_dims[0] == ctx->Attrs().Get<int>("contextLength") * x_dims[1],
      "Filter's height should be context_length * "
      "input_hidden_size .");

  ctx->SetOutputDim("Out", {x_dims[0], w_dims[1]});
  ctx->SetOutputDim("ColMat", {x_dims[0], w_dims[0]});
  ctx->ShareLoD("X", "Out");
}

framework::OpKernelType FusionSeqConvEltAddReluOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

void FusionSeqConvEltAddReluOpMaker::Make() {
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  // PaddingData only support false yet, should be ensured at pass.
  AddInput("Filter",
           "(Tensor) same as the input(Filter) of sequence conv op is an "
           "learnable parameter."
           "This is a tensor with shape (K, N), where K is the "
           "context_length * dim size of x, N is the output feature size.");
  AddInput("Bias",
           "(Tensor) the learnable weights. shape (1, N), where N is the "
           "output feature size");
  AddOutput(
      "Out",
      "(LoDTensor) the output(Out) is a LodTensor, which support "
      "variable-time length output sequence. The underlying tensor in "
      "this LoDTensor is a matrix with shape (T, N), where, T is the "
      "total time steps in this mini-batch, N is the output feature size.");
  AddOutput("ColMat",
            "(Tensor) (T, K), where T is where T is the "
            "total time steps in this mini-batch, K is height of Filter")
      .AsIntermediate();
  AddAttr<int>("contextLength",
               "(int) the contextLength of FusionSeqConvEltAddReluOp is the "
               "height of the convolution kernel.")
      .GreaterThan(0);
  AddAttr<int>("contextStart",
               "(int, default:0) the contextStart of FusionSeqConvEltAddReluOp "
               "represents the beginning of the convolution of the number of "
               "rows of sequence, which can be negative. The negative number "
               "means to pad contextStart time-steps of zeros or learnable "
               "parameters at the beginning of each instance. The positive "
               "number means to skip contextStart time-steps of each "
               "instance.")
      .SetDefault(0);
  AddAttr<int>(
      "contextStride",
      "(int, default:1) the contextStride of FusionSeqConvEltAddReluOp "
      "represents the stride length of convolution kernel. "
      "Currently, FusionSeqConvEltAddReluOp only supports"
      "contextStride=1.")
      .SetDefault(1)
      .GreaterThan(0);
  AddComment(R"DOC(
Fusion Sequence Conv and ElementwiseAdd Operator.
)DOC");
}

template <typename T>
class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
    auto* w = ctx.Input<Tensor>("Filter");
    auto* b = ctx.Input<Tensor>("Bias");
    auto* y = ctx.Output<LoDTensor>("Out");
    auto* col = ctx.Output<Tensor>("ColMat");

    auto x_lod = x->lod();
    auto x_dims = x->dims();
    auto w_dims = w->dims();
    PADDLE_ENFORCE_EQ(b->numel(), w_dims[1],
                      "bias size should be equal to output feature size.");
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL,
                      "Only support one level sequence now.");

    const T* x_data = x->data<T>();
    const T* w_data = w->data<T>();
    const T* b_data = b->data<T>();
    T* y_data = y->mutable_data<T>(ctx.GetPlace());
    T* col_data = col->mutable_data<T>(ctx.GetPlace());

    int context_start = ctx.Attr<int>("contextStart");
    int context_length = ctx.Attr<int>("contextLength");
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
    // im2col
    int src_mat_w = static_cast<int>(x_dims[1]);
    int src_mat_w_sz = src_mat_w * sizeof(T);
    int col_mat_w = static_cast<int>(w_dims[0]);
    int col_mat_w_sz = col_mat_w * sizeof(T);
    for (int i = 0; i < static_cast<int>(x_lod[0].size()) - 1; ++i) {
      int st = x_lod[0][i];
      int ed = x_lod[0][i + 1];
      const T* src_data = x_data + st * src_mat_w;
      T* dst_data = col_data + st * col_mat_w;
      int seq_len = ed - st;
      if (seq_len > up_pad + down_pad) {
        // zero all up_pad
        std::memset(dst_data, 0, up_pad * col_mat_w_sz);
        // fill up_pad data
        dst_data = dst_data + up_pad * src_mat_w;
        int copy_size = col_mat_w_sz - up_pad * src_mat_w_sz;
        for (int j = 0; j < up_pad; ++j) {
          // blas.VCOPY?
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += (col_mat_w - src_mat_w);
          copy_size += src_mat_w_sz;
        }
        // fill data
        for (int j = 0; j < seq_len - up_pad - down_pad; ++j) {
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += col_mat_w;
          src_data += src_mat_w;
        }
        // zero all down_pad
        std::memset(dst_data, 0, down_pad * col_mat_w_sz);
        // fill down_pad data
        copy_size -= src_mat_w_sz;
        for (int j = 0; j < down_pad; ++j) {
          std::memcpy(dst_data, src_data, copy_size);
          dst_data += col_mat_w;
          src_data += src_mat_w;
          copy_size -= src_mat_w_sz;
        }
      } else {
        PADDLE_ENFORCE_GE(context_length, up_pad + down_pad + 1);
        std::memset(dst_data, 0, seq_len * col_mat_w_sz);
        int zero_sz = up_pad * src_mat_w_sz;
        int seq_len_size = seq_len * src_mat_w_sz;
        for (int j = 0; j < std::min(up_pad, seq_len); ++j) {
          int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz);
          std::memcpy(dst_data + zero_sz / sizeof(T), src_data, copy_size);
          dst_data += col_mat_w;
          zero_sz -= src_mat_w_sz;
        }
        zero_sz = down_pad * src_mat_w_sz;
        dst_data = col_data + (ed - 1) * col_mat_w;
        src_data = x_data + (ed - up_pad - 1) * src_mat_w;
        for (int j = 0; j < std::min(0, seq_len - up_pad); ++j) {
          int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz);
          std::memcpy(dst_data, src_data, copy_size);
          dst_data -= col_mat_w;
          src_data += src_mat_w;
          zero_sz -= src_mat_w_sz;
        }
      }
    }

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    math::FCCompute<DeviceContext, T>(blas, x_dims[0], w_dims[1], w_dims[0],
                                      col_data, w_data, y_data, b_data, true);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqconv_eltadd_relu, ops::FusionSeqConvEltAddReluOp,
                  ops::FusionSeqConvEltAddReluOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(fusion_seqconv_eltadd_relu,
                       ops::FusionSeqConvEltAddReluKernel<float>,
                       ops::FusionSeqConvEltAddReluKernel<double>);